Vahid Jamali, Aryou Emamifar, Hadi Beiginejad, Mohammad Moradi, Mousa Rasouli
{"title":"用 13C/12C 同位素比值分析法检测伊朗葡萄糖浆中添加的葡萄糖/果糖/甜菜糖浆的掺假情况","authors":"Vahid Jamali, Aryou Emamifar, Hadi Beiginejad, Mohammad Moradi, Mousa Rasouli","doi":"10.1002/fsn3.4259","DOIUrl":null,"url":null,"abstract":"<p>Grape molasses (GM), produced from grapes, is a traditional Iranian food and is widely consumed in Iran. However, GM adulteration is among the most widespread illegitimate procedures involving contamination of food with foreign materials, such as adding sugar–water solution, date syrup, sugar beet syrup, and grape sauce. This study used stable carbon <sup>13</sup>C/<sup>12</sup>C isotope ratio analysis method to detect adulteration of GM samples with glucose syrups (GS), fructose syrups (FS), and beet sugar syrups (BS) at the ratio of 0%, 10%, 30%, and 50% (by weight). Physicochemical properties of GM including °Brix, conductivity, specific gravity, pH, moisture content, ash content, hydroxymethyl furfural, sugar content, and rheological properties of samples were investigated. The δ<sup>13</sup>C isotope ratio of the GM was determined as −26.61%, that of the GS as −13.23%, that of the FS as −13.42%, and that of the BS as −16.58%. The δ<sup>13</sup>C isotope ratio increased by the addition of adulterant syrups to GM. The addition of each adulterant syrup had a different effect on the physicochemical parameters; however, the °Brix and specific gravity had a positive correlation with the δ<sup>13</sup>C isotope ratio results. The magnitudes of G' and G\" increase with an increase in frequency representing the viscoelastic behavior of samples. The obtained results of this study suggest the use of δ<sup>13</sup>C isotope ratio method as a fast and accurate method to investigate the adulteration of grape molasses.</p>","PeriodicalId":12418,"journal":{"name":"Food Science & Nutrition","volume":"12 10","pages":"8432-8440"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsn3.4259","citationCount":"0","resultStr":"{\"title\":\"Detection of adulteration in Iranian grape molasses added glucose/fructose/sugar beet syrups with 13C/12C isotope ratio analysis method\",\"authors\":\"Vahid Jamali, Aryou Emamifar, Hadi Beiginejad, Mohammad Moradi, Mousa Rasouli\",\"doi\":\"10.1002/fsn3.4259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Grape molasses (GM), produced from grapes, is a traditional Iranian food and is widely consumed in Iran. However, GM adulteration is among the most widespread illegitimate procedures involving contamination of food with foreign materials, such as adding sugar–water solution, date syrup, sugar beet syrup, and grape sauce. This study used stable carbon <sup>13</sup>C/<sup>12</sup>C isotope ratio analysis method to detect adulteration of GM samples with glucose syrups (GS), fructose syrups (FS), and beet sugar syrups (BS) at the ratio of 0%, 10%, 30%, and 50% (by weight). Physicochemical properties of GM including °Brix, conductivity, specific gravity, pH, moisture content, ash content, hydroxymethyl furfural, sugar content, and rheological properties of samples were investigated. The δ<sup>13</sup>C isotope ratio of the GM was determined as −26.61%, that of the GS as −13.23%, that of the FS as −13.42%, and that of the BS as −16.58%. The δ<sup>13</sup>C isotope ratio increased by the addition of adulterant syrups to GM. The addition of each adulterant syrup had a different effect on the physicochemical parameters; however, the °Brix and specific gravity had a positive correlation with the δ<sup>13</sup>C isotope ratio results. The magnitudes of G' and G\\\" increase with an increase in frequency representing the viscoelastic behavior of samples. The obtained results of this study suggest the use of δ<sup>13</sup>C isotope ratio method as a fast and accurate method to investigate the adulteration of grape molasses.</p>\",\"PeriodicalId\":12418,\"journal\":{\"name\":\"Food Science & Nutrition\",\"volume\":\"12 10\",\"pages\":\"8432-8440\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsn3.4259\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science & Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fsn3.4259\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science & Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fsn3.4259","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Detection of adulteration in Iranian grape molasses added glucose/fructose/sugar beet syrups with 13C/12C isotope ratio analysis method
Grape molasses (GM), produced from grapes, is a traditional Iranian food and is widely consumed in Iran. However, GM adulteration is among the most widespread illegitimate procedures involving contamination of food with foreign materials, such as adding sugar–water solution, date syrup, sugar beet syrup, and grape sauce. This study used stable carbon 13C/12C isotope ratio analysis method to detect adulteration of GM samples with glucose syrups (GS), fructose syrups (FS), and beet sugar syrups (BS) at the ratio of 0%, 10%, 30%, and 50% (by weight). Physicochemical properties of GM including °Brix, conductivity, specific gravity, pH, moisture content, ash content, hydroxymethyl furfural, sugar content, and rheological properties of samples were investigated. The δ13C isotope ratio of the GM was determined as −26.61%, that of the GS as −13.23%, that of the FS as −13.42%, and that of the BS as −16.58%. The δ13C isotope ratio increased by the addition of adulterant syrups to GM. The addition of each adulterant syrup had a different effect on the physicochemical parameters; however, the °Brix and specific gravity had a positive correlation with the δ13C isotope ratio results. The magnitudes of G' and G" increase with an increase in frequency representing the viscoelastic behavior of samples. The obtained results of this study suggest the use of δ13C isotope ratio method as a fast and accurate method to investigate the adulteration of grape molasses.
期刊介绍:
Food Science & Nutrition is the peer-reviewed journal for rapid dissemination of research in all areas of food science and nutrition. The Journal will consider submissions of quality papers describing the results of fundamental and applied research related to all aspects of human food and nutrition, as well as interdisciplinary research that spans these two fields.