{"title":"失稳后退接触线的弱惯性效应","authors":"Akhil Varma","doi":"10.1103/physrevfluids.9.084006","DOIUrl":null,"url":null,"abstract":"It is known that, beyond a critical speed, the straight contact line of a partially -wetting liquid destabilizes into a corner. One of the earliest theoretical works exploring this phenomenon [Limat and Stone, <span>Europhys. Lett.</span> <b>65</b>, 365 (2004)] elicited a self-similar conical structure of the interface in the viscous regime. However, noting that inertia is not expected to be negligible at contact line speeds close to and beyond the critical value for many common liquids, we provide the leading-order inertial correction to their solution. In particular, we find the self-similar corrections to the interface shape as well as the flow field, and also determine their scaling with the capillary number. We find that inertia invariably modifies the interface into a cusplike shape with an increased film thickness. Furthermore, when incorporating contact line dynamics into the model, resulting in a narrowing of the corner as the contact line speed increases, we still observe an overall increase in the inertial contribution with speed despite the increased confinement.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak-inertial effects on destabilized receding contact lines\",\"authors\":\"Akhil Varma\",\"doi\":\"10.1103/physrevfluids.9.084006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that, beyond a critical speed, the straight contact line of a partially -wetting liquid destabilizes into a corner. One of the earliest theoretical works exploring this phenomenon [Limat and Stone, <span>Europhys. Lett.</span> <b>65</b>, 365 (2004)] elicited a self-similar conical structure of the interface in the viscous regime. However, noting that inertia is not expected to be negligible at contact line speeds close to and beyond the critical value for many common liquids, we provide the leading-order inertial correction to their solution. In particular, we find the self-similar corrections to the interface shape as well as the flow field, and also determine their scaling with the capillary number. We find that inertia invariably modifies the interface into a cusplike shape with an increased film thickness. Furthermore, when incorporating contact line dynamics into the model, resulting in a narrowing of the corner as the contact line speed increases, we still observe an overall increase in the inertial contribution with speed despite the increased confinement.\",\"PeriodicalId\":20160,\"journal\":{\"name\":\"Physical Review Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Fluids\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevfluids.9.084006\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Fluids","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevfluids.9.084006","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
摘要
众所周知,当速度超过临界值时,部分润湿液体的直线接触线会不稳定地变成拐角。探索这一现象的最早理论著作之一[Limat 和 Stone,Europhys. Lett. 65, 365 (2004)]提出了粘滞状态下界面的自相似锥形结构。然而,我们注意到,对于许多常见液体来说,在接触线速度接近或超过临界值时,惯性是不可忽略的。特别是,我们找到了界面形状和流场的自相似修正,并确定了它们与毛细管数的比例关系。我们发现,随着薄膜厚度的增加,惯性无一例外地将界面修正为尖顶状。此外,当将接触线动力学纳入模型时,随着接触线速度的增加,角会变窄,尽管封闭性增加,我们仍然观察到惯性贡献随速度的总体增加而增加。
Weak-inertial effects on destabilized receding contact lines
It is known that, beyond a critical speed, the straight contact line of a partially -wetting liquid destabilizes into a corner. One of the earliest theoretical works exploring this phenomenon [Limat and Stone, Europhys. Lett.65, 365 (2004)] elicited a self-similar conical structure of the interface in the viscous regime. However, noting that inertia is not expected to be negligible at contact line speeds close to and beyond the critical value for many common liquids, we provide the leading-order inertial correction to their solution. In particular, we find the self-similar corrections to the interface shape as well as the flow field, and also determine their scaling with the capillary number. We find that inertia invariably modifies the interface into a cusplike shape with an increased film thickness. Furthermore, when incorporating contact line dynamics into the model, resulting in a narrowing of the corner as the contact line speed increases, we still observe an overall increase in the inertial contribution with speed despite the increased confinement.
期刊介绍:
Physical Review Fluids is APS’s newest online-only journal dedicated to publishing innovative research that will significantly advance the fundamental understanding of fluid dynamics. Physical Review Fluids expands the scope of the APS journals to include additional areas of fluid dynamics research, complements the existing Physical Review collection, and maintains the same quality and reputation that authors and subscribers expect from APS. The journal is published with the endorsement of the APS Division of Fluid Dynamics.