壁面建模大涡流模拟中对数层错配的物理信息机器学习解决方案

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Physical Review Fluids Pub Date : 2024-08-26 DOI:10.1103/physrevfluids.9.084609
Soju Maejima, Kazuki Tanino, Soshi Kawai
{"title":"壁面建模大涡流模拟中对数层错配的物理信息机器学习解决方案","authors":"Soju Maejima, Kazuki Tanino, Soshi Kawai","doi":"10.1103/physrevfluids.9.084609","DOIUrl":null,"url":null,"abstract":"This study proposes a physics-informed machine learning to enable using the erroneous flow data at near-wall grid points as the input to the wall model in a wall-modeled large-eddy simulation (LES). The proposed neural network predicts the amount of numerical error in the near-wall grid-point data and inputs the physically correct flow variables into the wall model by correcting the near-wall error. The input and output features of the neural networks are selected based on the physical relations of the turbulent boundary layer for robustness against various Reynolds and Mach number conditions. The proposed neural networks allow the wall model to accurately predict the wall shear stress from the erroneous near-wall information and yields accurate predictions of the turbulence statistics. Additionally, the proposed physics-informed machine-learning approach reproduces the asymmetry in the probability density functions of the predicted wall shear stress observed in direct numerical simulations, while the conventional wall model with input away from the wall does not. The results suggest that using the near-wall information for wall modeling may increase the fidelity of the wall-modeled LES.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-informed machine-learning solution to log-layer mismatch in wall-modeled large-eddy simulation\",\"authors\":\"Soju Maejima, Kazuki Tanino, Soshi Kawai\",\"doi\":\"10.1103/physrevfluids.9.084609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a physics-informed machine learning to enable using the erroneous flow data at near-wall grid points as the input to the wall model in a wall-modeled large-eddy simulation (LES). The proposed neural network predicts the amount of numerical error in the near-wall grid-point data and inputs the physically correct flow variables into the wall model by correcting the near-wall error. The input and output features of the neural networks are selected based on the physical relations of the turbulent boundary layer for robustness against various Reynolds and Mach number conditions. The proposed neural networks allow the wall model to accurately predict the wall shear stress from the erroneous near-wall information and yields accurate predictions of the turbulence statistics. Additionally, the proposed physics-informed machine-learning approach reproduces the asymmetry in the probability density functions of the predicted wall shear stress observed in direct numerical simulations, while the conventional wall model with input away from the wall does not. The results suggest that using the near-wall information for wall modeling may increase the fidelity of the wall-modeled LES.\",\"PeriodicalId\":20160,\"journal\":{\"name\":\"Physical Review Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Fluids\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevfluids.9.084609\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Fluids","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevfluids.9.084609","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种物理信息机器学习方法,可将近壁网格点的错误流量数据作为壁模型大涡流模拟(LES)中壁模型的输入。所提出的神经网络可预测近壁网格点数据的数值误差量,并通过修正近壁误差将物理上正确的流动变量输入壁模型。神经网络的输入和输出特性是根据湍流边界层的物理关系选择的,以确保在各种雷诺数和马赫数条件下的鲁棒性。所提出的神经网络允许壁面模型从错误的近壁信息中准确预测壁面切应力,并产生准确的湍流统计预测。此外,所提出的物理信息机器学习方法再现了直接数值模拟中观察到的壁面剪应力预测概率密度函数的不对称性,而使用远离壁面输入的传统壁面模型则没有这种不对称性。结果表明,使用近壁信息进行壁面建模可提高壁面建模 LES 的保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physics-informed machine-learning solution to log-layer mismatch in wall-modeled large-eddy simulation
This study proposes a physics-informed machine learning to enable using the erroneous flow data at near-wall grid points as the input to the wall model in a wall-modeled large-eddy simulation (LES). The proposed neural network predicts the amount of numerical error in the near-wall grid-point data and inputs the physically correct flow variables into the wall model by correcting the near-wall error. The input and output features of the neural networks are selected based on the physical relations of the turbulent boundary layer for robustness against various Reynolds and Mach number conditions. The proposed neural networks allow the wall model to accurately predict the wall shear stress from the erroneous near-wall information and yields accurate predictions of the turbulence statistics. Additionally, the proposed physics-informed machine-learning approach reproduces the asymmetry in the probability density functions of the predicted wall shear stress observed in direct numerical simulations, while the conventional wall model with input away from the wall does not. The results suggest that using the near-wall information for wall modeling may increase the fidelity of the wall-modeled LES.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Fluids
Physical Review Fluids Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
5.10
自引率
11.10%
发文量
488
期刊介绍: Physical Review Fluids is APS’s newest online-only journal dedicated to publishing innovative research that will significantly advance the fundamental understanding of fluid dynamics. Physical Review Fluids expands the scope of the APS journals to include additional areas of fluid dynamics research, complements the existing Physical Review collection, and maintains the same quality and reputation that authors and subscribers expect from APS. The journal is published with the endorsement of the APS Division of Fluid Dynamics.
期刊最新文献
Maximization of inertial waves focusing in linear and nonlinear regimes Stationary and nonstationary energy cascades in homogeneous ferrofluid turbulence Coupled volume of fluid and phase field method for direct numerical simulation of insoluble surfactant-laden interfacial flows and application to rising bubbles Deep reinforcement learning of airfoil pitch control in a highly disturbed environment using partial observations Spreading and engulfment of a viscoelastic film onto a Newtonian droplet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1