斯帕拉特-奥尔马拉斯湍流模型的稳健实验数据同化

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Physical Review Fluids Pub Date : 2024-08-22 DOI:10.1103/physrevfluids.9.084608
Deepinder Jot Singh Aulakh, Xiang Yang, Romit Maulik
{"title":"斯帕拉特-奥尔马拉斯湍流模型的稳健实验数据同化","authors":"Deepinder Jot Singh Aulakh, Xiang Yang, Romit Maulik","doi":"10.1103/physrevfluids.9.084608","DOIUrl":null,"url":null,"abstract":"This study presents a methodology focusing on the use of computational model and experimental data fusion to improve the Spalart-Allmaras (SA) closure model for Reynolds-averaged Navier-Stokes solutions. In particular, our goal is to develop a technique that not only assimilates sparse experimental data to improve turbulence model performance, but also preserves generalization for unseen cases by recovering classical SA behavior. We achieve our goals using data assimilation, namely the ensemble Kalman filtering approach, to calibrate the coefficients of the SA model for separated flows. A holistic calibration strategy is implemented via the parametrization of the production, diffusion, and destruction terms. This calibration relies on the assimilation of experimental data collected in the form of velocity profiles, skin friction, and pressure coefficients. Despite using observational data from a single flow condition around a backward-facing step (BFS), the recalibrated SA model demonstrates generalization to other separated flows, including cases such as the two-dimensional (2D) NASA wall mounted hump and the modified BFS. Significant improvement is observed in the quantities of interest, i.e., the skin friction coefficient <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>(</mo><msub><mi>C</mi><mi>f</mi></msub><mo>)</mo></math> and the pressure coefficient <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>(</mo><msub><mi>C</mi><mi>p</mi></msub><mo>)</mo></math>, for each flow tested. Finally, it is also demonstrated that the newly proposed model recovers SA proficiency for flows, such as a NACA-0012 airfoil and axisymmetric jet, and that the individually calibrated terms in the SA model target specific flow-physics wherein the calibrated production term improves the recirculation zone while destruction improves the recovery zone.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust experimental data assimilation for the Spalart-Allmaras turbulence model\",\"authors\":\"Deepinder Jot Singh Aulakh, Xiang Yang, Romit Maulik\",\"doi\":\"10.1103/physrevfluids.9.084608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a methodology focusing on the use of computational model and experimental data fusion to improve the Spalart-Allmaras (SA) closure model for Reynolds-averaged Navier-Stokes solutions. In particular, our goal is to develop a technique that not only assimilates sparse experimental data to improve turbulence model performance, but also preserves generalization for unseen cases by recovering classical SA behavior. We achieve our goals using data assimilation, namely the ensemble Kalman filtering approach, to calibrate the coefficients of the SA model for separated flows. A holistic calibration strategy is implemented via the parametrization of the production, diffusion, and destruction terms. This calibration relies on the assimilation of experimental data collected in the form of velocity profiles, skin friction, and pressure coefficients. Despite using observational data from a single flow condition around a backward-facing step (BFS), the recalibrated SA model demonstrates generalization to other separated flows, including cases such as the two-dimensional (2D) NASA wall mounted hump and the modified BFS. Significant improvement is observed in the quantities of interest, i.e., the skin friction coefficient <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo>(</mo><msub><mi>C</mi><mi>f</mi></msub><mo>)</mo></math> and the pressure coefficient <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo>(</mo><msub><mi>C</mi><mi>p</mi></msub><mo>)</mo></math>, for each flow tested. Finally, it is also demonstrated that the newly proposed model recovers SA proficiency for flows, such as a NACA-0012 airfoil and axisymmetric jet, and that the individually calibrated terms in the SA model target specific flow-physics wherein the calibrated production term improves the recirculation zone while destruction improves the recovery zone.\",\"PeriodicalId\":20160,\"journal\":{\"name\":\"Physical Review Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Fluids\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevfluids.9.084608\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Fluids","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevfluids.9.084608","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种方法,重点是利用计算模型和实验数据融合来改进雷诺平均纳维-斯托克斯解的斯帕拉特-阿勒马拉斯(SA)闭合模型。特别是,我们的目标是开发一种技术,它不仅能同化稀疏的实验数据以提高湍流模型的性能,还能通过恢复经典的 SA 行为来保留未见案例的通用性。我们利用数据同化(即集合卡尔曼滤波方法)来校准分离流的 SA 模型系数,从而实现我们的目标。通过对生产、扩散和破坏项进行参数化,实施了整体校准策略。这种校准依赖于以速度剖面、表皮摩擦和压力系数形式收集的实验数据的同化。尽管使用的是后向阶梯(BFS)周围单一流动条件的观测数据,但重新校准的 SA 模型显示出对其他分离流动的普适性,包括二维(2D)NASA 壁装驼峰和改进的 BFS 等情况。在所测试的每种流体中,都能观察到相关量(即表皮摩擦系数 (Cf) 和压力系数 (Cp))的显著改善。最后,还证明了新提出的模型能够熟练地恢复 NACA-0012 机翼和轴对称射流等流动的 SA,而且 SA 模型中的单独校准项针对的是特定的流动物理,其中校准的生产项改善了再循环区,而破坏项改善了恢复区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust experimental data assimilation for the Spalart-Allmaras turbulence model
This study presents a methodology focusing on the use of computational model and experimental data fusion to improve the Spalart-Allmaras (SA) closure model for Reynolds-averaged Navier-Stokes solutions. In particular, our goal is to develop a technique that not only assimilates sparse experimental data to improve turbulence model performance, but also preserves generalization for unseen cases by recovering classical SA behavior. We achieve our goals using data assimilation, namely the ensemble Kalman filtering approach, to calibrate the coefficients of the SA model for separated flows. A holistic calibration strategy is implemented via the parametrization of the production, diffusion, and destruction terms. This calibration relies on the assimilation of experimental data collected in the form of velocity profiles, skin friction, and pressure coefficients. Despite using observational data from a single flow condition around a backward-facing step (BFS), the recalibrated SA model demonstrates generalization to other separated flows, including cases such as the two-dimensional (2D) NASA wall mounted hump and the modified BFS. Significant improvement is observed in the quantities of interest, i.e., the skin friction coefficient (Cf) and the pressure coefficient (Cp), for each flow tested. Finally, it is also demonstrated that the newly proposed model recovers SA proficiency for flows, such as a NACA-0012 airfoil and axisymmetric jet, and that the individually calibrated terms in the SA model target specific flow-physics wherein the calibrated production term improves the recirculation zone while destruction improves the recovery zone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Fluids
Physical Review Fluids Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
5.10
自引率
11.10%
发文量
488
期刊介绍: Physical Review Fluids is APS’s newest online-only journal dedicated to publishing innovative research that will significantly advance the fundamental understanding of fluid dynamics. Physical Review Fluids expands the scope of the APS journals to include additional areas of fluid dynamics research, complements the existing Physical Review collection, and maintains the same quality and reputation that authors and subscribers expect from APS. The journal is published with the endorsement of the APS Division of Fluid Dynamics.
期刊最新文献
Maximization of inertial waves focusing in linear and nonlinear regimes Stationary and nonstationary energy cascades in homogeneous ferrofluid turbulence Coupled volume of fluid and phase field method for direct numerical simulation of insoluble surfactant-laden interfacial flows and application to rising bubbles Deep reinforcement learning of airfoil pitch control in a highly disturbed environment using partial observations Spreading and engulfment of a viscoelastic film onto a Newtonian droplet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1