{"title":"湍流边界层高阶矩的自标度广义汤森-佩里常数","authors":"Xibo He, Hongyou Liu, Xiaojing Zheng","doi":"10.1103/physrevfluids.9.l082602","DOIUrl":null,"url":null,"abstract":"Inspired by the thought-provoking paper of Meneveau and Marusic [<span>J. Fluid Mech.</span> <b>719</b>, R1 (2013)], the universal expression of the self-scaling generalized Townsend-Perry constants for the high-order statistical moments is investigated. The measured results deviate from the previous attached-eddy-model–based Gaussian prediction because the wall-non-attached eddies with sub-Gaussian statistics mask the Gaussian behavior of the wall-attached eddies. Leveraging the generalized Gaussian distribution function and the logarithmic law for turbulence intensity, the universal expression of the self-scaling generalized Townsend-Perry constants, regardless of the eddy type, is derived. Moreover, asymptotic expression of the shape parameter in self-scaling generalized Townsend-Perry constants with Reynolds number is further characterized by data in boundary layers and atmospheric surface layers with Reynolds number <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>R</mi><msub><mi>e</mi><mi>τ</mi></msub></mrow></math> spanning over <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>O</mi><mo>(</mo><msup><mn>10</mn><mn>3</mn></msup><mo>)</mo></mrow></math> to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>O</mi><mo>(</mo><msup><mn>10</mn><mn>6</mn></msup><mo>)</mo></mrow></math>.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-scaling generalized Townsend-Perry constants for high-order moments in turbulent boundary layers\",\"authors\":\"Xibo He, Hongyou Liu, Xiaojing Zheng\",\"doi\":\"10.1103/physrevfluids.9.l082602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by the thought-provoking paper of Meneveau and Marusic [<span>J. Fluid Mech.</span> <b>719</b>, R1 (2013)], the universal expression of the self-scaling generalized Townsend-Perry constants for the high-order statistical moments is investigated. The measured results deviate from the previous attached-eddy-model–based Gaussian prediction because the wall-non-attached eddies with sub-Gaussian statistics mask the Gaussian behavior of the wall-attached eddies. Leveraging the generalized Gaussian distribution function and the logarithmic law for turbulence intensity, the universal expression of the self-scaling generalized Townsend-Perry constants, regardless of the eddy type, is derived. Moreover, asymptotic expression of the shape parameter in self-scaling generalized Townsend-Perry constants with Reynolds number is further characterized by data in boundary layers and atmospheric surface layers with Reynolds number <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>R</mi><msub><mi>e</mi><mi>τ</mi></msub></mrow></math> spanning over <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>O</mi><mo>(</mo><msup><mn>10</mn><mn>3</mn></msup><mo>)</mo></mrow></math> to <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>O</mi><mo>(</mo><msup><mn>10</mn><mn>6</mn></msup><mo>)</mo></mrow></math>.\",\"PeriodicalId\":20160,\"journal\":{\"name\":\"Physical Review Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Fluids\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevfluids.9.l082602\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Fluids","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevfluids.9.l082602","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Self-scaling generalized Townsend-Perry constants for high-order moments in turbulent boundary layers
Inspired by the thought-provoking paper of Meneveau and Marusic [J. Fluid Mech.719, R1 (2013)], the universal expression of the self-scaling generalized Townsend-Perry constants for the high-order statistical moments is investigated. The measured results deviate from the previous attached-eddy-model–based Gaussian prediction because the wall-non-attached eddies with sub-Gaussian statistics mask the Gaussian behavior of the wall-attached eddies. Leveraging the generalized Gaussian distribution function and the logarithmic law for turbulence intensity, the universal expression of the self-scaling generalized Townsend-Perry constants, regardless of the eddy type, is derived. Moreover, asymptotic expression of the shape parameter in self-scaling generalized Townsend-Perry constants with Reynolds number is further characterized by data in boundary layers and atmospheric surface layers with Reynolds number spanning over to .
期刊介绍:
Physical Review Fluids is APS’s newest online-only journal dedicated to publishing innovative research that will significantly advance the fundamental understanding of fluid dynamics. Physical Review Fluids expands the scope of the APS journals to include additional areas of fluid dynamics research, complements the existing Physical Review collection, and maintains the same quality and reputation that authors and subscribers expect from APS. The journal is published with the endorsement of the APS Division of Fluid Dynamics.