活动层中的对流加速了粗粒土壤中永久冻土的融化

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Physical Review Fluids Pub Date : 2024-08-19 DOI:10.1103/physrevfluids.9.l081501
M. Magnani, S. Musacchio, A. Provenzale, G. Boffetta
{"title":"活动层中的对流加速了粗粒土壤中永久冻土的融化","authors":"M. Magnani, S. Musacchio, A. Provenzale, G. Boffetta","doi":"10.1103/physrevfluids.9.l081501","DOIUrl":null,"url":null,"abstract":"Permafrost thaw is a major concern raised by the ongoing climate change. An understudied phenomenon possibly affecting the pace of permafrost thaw is the onset of convective motions within the active layer caused by the density anomaly of water. Here we explore the effects of groundwater convection on permafrost thawing using a model that accounts for ice-water phase transitions, coupled with the dynamics of the temperature field transported by the Darcy's flow across a porous matrix. Numerical simulations of this model show that ice thawing in the presence of convection is much faster than in the diffusive case and deepens at a constant velocity proportional to the soil permeability. A scaling argument is able to predict correctly the asymptotic velocity. Since in the convective regime the heat transport is mediated by the coherent motion of thermal plumes across the thawed layer, we find that the depth of the thawing interface becomes highly heterogeneous.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"62 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convection in the active layer speeds up permafrost thaw in coarse-grained soils\",\"authors\":\"M. Magnani, S. Musacchio, A. Provenzale, G. Boffetta\",\"doi\":\"10.1103/physrevfluids.9.l081501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Permafrost thaw is a major concern raised by the ongoing climate change. An understudied phenomenon possibly affecting the pace of permafrost thaw is the onset of convective motions within the active layer caused by the density anomaly of water. Here we explore the effects of groundwater convection on permafrost thawing using a model that accounts for ice-water phase transitions, coupled with the dynamics of the temperature field transported by the Darcy's flow across a porous matrix. Numerical simulations of this model show that ice thawing in the presence of convection is much faster than in the diffusive case and deepens at a constant velocity proportional to the soil permeability. A scaling argument is able to predict correctly the asymptotic velocity. Since in the convective regime the heat transport is mediated by the coherent motion of thermal plumes across the thawed layer, we find that the depth of the thawing interface becomes highly heterogeneous.\",\"PeriodicalId\":20160,\"journal\":{\"name\":\"Physical Review Fluids\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Fluids\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevfluids.9.l081501\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Fluids","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevfluids.9.l081501","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

永久冻土融化是当前气候变化引起的一个主要问题。可能影响永久冻土融化速度的一种未被充分研究的现象是由水的密度异常引起的活动层内对流运动的开始。在此,我们使用一个模型来探讨地下水对流对永久冻土融化的影响,该模型考虑了冰水相变,以及多孔基质中达西流传递的温度场动态。该模型的数值模拟显示,存在对流时冰的解冻速度比扩散情况下要快得多,并以与土壤渗透率成正比的恒定速度加深。缩放论证能够正确预测渐进速度。由于在对流状态下,热量传输是通过热羽流在解冻层上的相干运动来实现的,因此我们发现解冻界面的深度变得非常不均匀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convection in the active layer speeds up permafrost thaw in coarse-grained soils
Permafrost thaw is a major concern raised by the ongoing climate change. An understudied phenomenon possibly affecting the pace of permafrost thaw is the onset of convective motions within the active layer caused by the density anomaly of water. Here we explore the effects of groundwater convection on permafrost thawing using a model that accounts for ice-water phase transitions, coupled with the dynamics of the temperature field transported by the Darcy's flow across a porous matrix. Numerical simulations of this model show that ice thawing in the presence of convection is much faster than in the diffusive case and deepens at a constant velocity proportional to the soil permeability. A scaling argument is able to predict correctly the asymptotic velocity. Since in the convective regime the heat transport is mediated by the coherent motion of thermal plumes across the thawed layer, we find that the depth of the thawing interface becomes highly heterogeneous.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Fluids
Physical Review Fluids Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
5.10
自引率
11.10%
发文量
488
期刊介绍: Physical Review Fluids is APS’s newest online-only journal dedicated to publishing innovative research that will significantly advance the fundamental understanding of fluid dynamics. Physical Review Fluids expands the scope of the APS journals to include additional areas of fluid dynamics research, complements the existing Physical Review collection, and maintains the same quality and reputation that authors and subscribers expect from APS. The journal is published with the endorsement of the APS Division of Fluid Dynamics.
期刊最新文献
Cavitation caused by an elastic membrane deforming under the jetting of a spark-induced bubble Laboratory study of wave turbulence under isotropic forcing Waves beneath a drop levitating over a moving wall Viscosity of capsule suspensions: Effects of internal-external viscosity ratio and capsule rupture release Drainage-induced spontaneous film climbing in capillaries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1