S. Danial Naghib, Matin Mirbaha, Kristina Logushkova, Jérôme Bibette, Nicolas Bremond
{"title":"将雾化、乳化和聚合步骤耦合在一起以制造凝胶微球","authors":"S. Danial Naghib, Matin Mirbaha, Kristina Logushkova, Jérôme Bibette, Nicolas Bremond","doi":"10.1103/physrevfluids.9.083604","DOIUrl":null,"url":null,"abstract":"Calibrated gel microspheres are used in several life-science applications, from embolization to DNA barcoding and drug delivery. Along with selecting or designing specific materials that depend on the application, various processes have been developed to produce such hydrogel particles. Here, we report a high throughput strategy that is based on the controlled fragmentation of an aqueous jet in air that results in droplets of monomer solution, their entry and collection in an oil bath, followed by polymerization of the emulsion droplets which thus turn into gel beads. Each step of the process is detailed and the operating conditions are optimized to obtain homogeneous polyacrylamide gel microspheres. The impact area of the stream of droplets at the free surface, that can be tuned with the help of an electric field, plays a major role in minimizing coalescence of droplets as well as mass transport between the dispersed phase and the continuous phase which is correlated to the sedimentation flow features of the dilute emulsion.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"12 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupling atomization, emulsification, and polymerization steps for creating gel microspheres\",\"authors\":\"S. Danial Naghib, Matin Mirbaha, Kristina Logushkova, Jérôme Bibette, Nicolas Bremond\",\"doi\":\"10.1103/physrevfluids.9.083604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calibrated gel microspheres are used in several life-science applications, from embolization to DNA barcoding and drug delivery. Along with selecting or designing specific materials that depend on the application, various processes have been developed to produce such hydrogel particles. Here, we report a high throughput strategy that is based on the controlled fragmentation of an aqueous jet in air that results in droplets of monomer solution, their entry and collection in an oil bath, followed by polymerization of the emulsion droplets which thus turn into gel beads. Each step of the process is detailed and the operating conditions are optimized to obtain homogeneous polyacrylamide gel microspheres. The impact area of the stream of droplets at the free surface, that can be tuned with the help of an electric field, plays a major role in minimizing coalescence of droplets as well as mass transport between the dispersed phase and the continuous phase which is correlated to the sedimentation flow features of the dilute emulsion.\",\"PeriodicalId\":20160,\"journal\":{\"name\":\"Physical Review Fluids\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Fluids\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevfluids.9.083604\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Fluids","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevfluids.9.083604","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Coupling atomization, emulsification, and polymerization steps for creating gel microspheres
Calibrated gel microspheres are used in several life-science applications, from embolization to DNA barcoding and drug delivery. Along with selecting or designing specific materials that depend on the application, various processes have been developed to produce such hydrogel particles. Here, we report a high throughput strategy that is based on the controlled fragmentation of an aqueous jet in air that results in droplets of monomer solution, their entry and collection in an oil bath, followed by polymerization of the emulsion droplets which thus turn into gel beads. Each step of the process is detailed and the operating conditions are optimized to obtain homogeneous polyacrylamide gel microspheres. The impact area of the stream of droplets at the free surface, that can be tuned with the help of an electric field, plays a major role in minimizing coalescence of droplets as well as mass transport between the dispersed phase and the continuous phase which is correlated to the sedimentation flow features of the dilute emulsion.
期刊介绍:
Physical Review Fluids is APS’s newest online-only journal dedicated to publishing innovative research that will significantly advance the fundamental understanding of fluid dynamics. Physical Review Fluids expands the scope of the APS journals to include additional areas of fluid dynamics research, complements the existing Physical Review collection, and maintains the same quality and reputation that authors and subscribers expect from APS. The journal is published with the endorsement of the APS Division of Fluid Dynamics.