{"title":"揭示氧气和臭氧在 C2N 单层上的反应活性","authors":"Soumendra Kumar Das, Lokanath Patra, Prasanjit Samal, Pratap Kumar Sahoo","doi":"10.1002/pssr.202400148","DOIUrl":null,"url":null,"abstract":"Understanding the interaction of various environmental oxidizing agents is important in determining the physical and chemical properties of 2D materials. Its impact holds great significance for the practical application of these materials in nanoscale devices functioning under ambient conditions. This study delves into the influence of O<jats:sub>2</jats:sub> and O<jats:sub>3</jats:sub> exposure on the structural and electronic characteristics of the C<jats:sub>2</jats:sub>N monolayer, focusing on the kinetics of adsorption and dissociation reactions. Employing first‐principles density‐functional theory calculations alongside climbing image nudged elastic band calculations, it is observed that the monolayer exhibits resistance to ozonation, evidenced by energy barriers of 0.56 eV. These processes are accompanied by the formation of COC groups. Furthermore, the dissociation mechanism involves charge transfers from the monolayer to the molecules. Notably, the dissociated configurations demonstrate higher bandgaps compared to the pristine monolayer, attributed to robust CO hybridization. These findings suggest the robustness of C<jats:sub>2</jats:sub>N monolayers against oxygen/ozone exposures, ensuring stability for devices incorporating these materials.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Reactivity of Oxygen and Ozone on C2N Monolayer\",\"authors\":\"Soumendra Kumar Das, Lokanath Patra, Prasanjit Samal, Pratap Kumar Sahoo\",\"doi\":\"10.1002/pssr.202400148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the interaction of various environmental oxidizing agents is important in determining the physical and chemical properties of 2D materials. Its impact holds great significance for the practical application of these materials in nanoscale devices functioning under ambient conditions. This study delves into the influence of O<jats:sub>2</jats:sub> and O<jats:sub>3</jats:sub> exposure on the structural and electronic characteristics of the C<jats:sub>2</jats:sub>N monolayer, focusing on the kinetics of adsorption and dissociation reactions. Employing first‐principles density‐functional theory calculations alongside climbing image nudged elastic band calculations, it is observed that the monolayer exhibits resistance to ozonation, evidenced by energy barriers of 0.56 eV. These processes are accompanied by the formation of COC groups. Furthermore, the dissociation mechanism involves charge transfers from the monolayer to the molecules. Notably, the dissociated configurations demonstrate higher bandgaps compared to the pristine monolayer, attributed to robust CO hybridization. These findings suggest the robustness of C<jats:sub>2</jats:sub>N monolayers against oxygen/ozone exposures, ensuring stability for devices incorporating these materials.\",\"PeriodicalId\":54619,\"journal\":{\"name\":\"Physica Status Solidi-Rapid Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi-Rapid Research Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/pssr.202400148\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi-Rapid Research Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssr.202400148","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Unveiling the Reactivity of Oxygen and Ozone on C2N Monolayer
Understanding the interaction of various environmental oxidizing agents is important in determining the physical and chemical properties of 2D materials. Its impact holds great significance for the practical application of these materials in nanoscale devices functioning under ambient conditions. This study delves into the influence of O2 and O3 exposure on the structural and electronic characteristics of the C2N monolayer, focusing on the kinetics of adsorption and dissociation reactions. Employing first‐principles density‐functional theory calculations alongside climbing image nudged elastic band calculations, it is observed that the monolayer exhibits resistance to ozonation, evidenced by energy barriers of 0.56 eV. These processes are accompanied by the formation of COC groups. Furthermore, the dissociation mechanism involves charge transfers from the monolayer to the molecules. Notably, the dissociated configurations demonstrate higher bandgaps compared to the pristine monolayer, attributed to robust CO hybridization. These findings suggest the robustness of C2N monolayers against oxygen/ozone exposures, ensuring stability for devices incorporating these materials.
期刊介绍:
Physica status solidi (RRL) - Rapid Research Letters was designed to offer extremely fast publication times and is currently one of the fastest double peer-reviewed publication media in solid state and materials physics. Average times are 11 days from submission to first editorial decision, and 12 days from acceptance to online publication. It communicates important findings with a high degree of novelty and need for express publication, as well as other results of immediate interest to the solid-state physics and materials science community. Published Letters require approval by at least two independent reviewers.
The journal covers topics such as preparation, structure and simulation of advanced materials, theoretical and experimental investigations of the atomistic and electronic structure, optical, magnetic, superconducting, ferroelectric and other properties of solids, nanostructures and low-dimensional systems as well as device applications. Rapid Research Letters particularly invites papers from interdisciplinary and emerging new areas of research.