痕量 B 对添加剂制造的近β钛合金 Ti55531 显微结构和力学性能的影响

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Engineering Materials Pub Date : 2024-08-29 DOI:10.1002/adem.202401241
Hanlin Ding, Lilin Wang, Lukai Yuan, Xin Lin, Weidong Huang
{"title":"痕量 B 对添加剂制造的近β钛合金 Ti55531 显微结构和力学性能的影响","authors":"Hanlin Ding, Lilin Wang, Lukai Yuan, Xin Lin, Weidong Huang","doi":"10.1002/adem.202401241","DOIUrl":null,"url":null,"abstract":"The refinement of β grains is an effective approach to optimize the grain boundary α phase and enhance the mechanical properties for laser‐directed energy deposited (L‐DED) titanium alloys. In this study, the primary β grain size is refined by adding 0.05 and 0.10 wt% boron in Ti55531, respectively. It was found that the addition of trace boron can not only reduce the primary β grain size during molten pool solidification process, but also can suppress the primary β grain coarsening during in‐situ thermal cycling process. The Ti55531 + 0.05B alloy exhibited higher strength and elongation. This is attributed to the enhanced coordinated deformation ability resulting from the refined β grains and little harmful effect resulting from the presence of needle TiB. In contrast, when the boron content increased to 0.10 wt%, the harmful effect of excessive TiB whiskers at the grain boundaries outweighed the favorable effect of the further β grain refinement, which leads to the decrease in plasticity. This study suggests that an appropriate boron content added can refine primary β grain significantly and meanwhile avoid too much TiB precipitation, achieving superior comprehensive mechanical properties for additive manufacturing near β titanium alloy.","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Trace B on Microstructure and Mechanical Properties of Additive Manufactured Near β Titanium Alloy Ti55531\",\"authors\":\"Hanlin Ding, Lilin Wang, Lukai Yuan, Xin Lin, Weidong Huang\",\"doi\":\"10.1002/adem.202401241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The refinement of β grains is an effective approach to optimize the grain boundary α phase and enhance the mechanical properties for laser‐directed energy deposited (L‐DED) titanium alloys. In this study, the primary β grain size is refined by adding 0.05 and 0.10 wt% boron in Ti55531, respectively. It was found that the addition of trace boron can not only reduce the primary β grain size during molten pool solidification process, but also can suppress the primary β grain coarsening during in‐situ thermal cycling process. The Ti55531 + 0.05B alloy exhibited higher strength and elongation. This is attributed to the enhanced coordinated deformation ability resulting from the refined β grains and little harmful effect resulting from the presence of needle TiB. In contrast, when the boron content increased to 0.10 wt%, the harmful effect of excessive TiB whiskers at the grain boundaries outweighed the favorable effect of the further β grain refinement, which leads to the decrease in plasticity. This study suggests that an appropriate boron content added can refine primary β grain significantly and meanwhile avoid too much TiB precipitation, achieving superior comprehensive mechanical properties for additive manufacturing near β titanium alloy.\",\"PeriodicalId\":7275,\"journal\":{\"name\":\"Advanced Engineering Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adem.202401241\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adem.202401241","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

细化β晶粒是优化晶界α相和提高激光直接能量沉积(L-DED)钛合金机械性能的有效方法。在本研究中,通过在 Ti55531 中分别添加 0.05 和 0.10 wt% 的硼,细化了主β晶粒尺寸。研究发现,微量硼的加入不仅能减小熔池凝固过程中的初β晶粒尺寸,还能抑制原位热循环过程中的初β晶粒粗化。Ti55531 + 0.05B 合金表现出更高的强度和伸长率。这归因于细化的 β 晶粒增强了协调变形能力,而针状 TiB 的存在几乎不会产生有害影响。相反,当硼含量增加到 0.10 wt% 时,晶界上过量 TiB 晶须的有害影响超过了进一步细化 β 晶粒的有利影响,从而导致塑性下降。该研究表明,适当的硼含量可以显著细化原始β晶粒,同时避免过多的TiB析出,为增材制造近β钛合金实现优异的综合力学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Trace B on Microstructure and Mechanical Properties of Additive Manufactured Near β Titanium Alloy Ti55531
The refinement of β grains is an effective approach to optimize the grain boundary α phase and enhance the mechanical properties for laser‐directed energy deposited (L‐DED) titanium alloys. In this study, the primary β grain size is refined by adding 0.05 and 0.10 wt% boron in Ti55531, respectively. It was found that the addition of trace boron can not only reduce the primary β grain size during molten pool solidification process, but also can suppress the primary β grain coarsening during in‐situ thermal cycling process. The Ti55531 + 0.05B alloy exhibited higher strength and elongation. This is attributed to the enhanced coordinated deformation ability resulting from the refined β grains and little harmful effect resulting from the presence of needle TiB. In contrast, when the boron content increased to 0.10 wt%, the harmful effect of excessive TiB whiskers at the grain boundaries outweighed the favorable effect of the further β grain refinement, which leads to the decrease in plasticity. This study suggests that an appropriate boron content added can refine primary β grain significantly and meanwhile avoid too much TiB precipitation, achieving superior comprehensive mechanical properties for additive manufacturing near β titanium alloy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
期刊最新文献
Masthead Combining Chemical Vapor Deposition and Spark Plasma Sintering for the Production of Tungsten Fiber-Reinforced Tungsten (Hybrid – Wf/W) Comparative Study of Room and Cryogenic Deformation Behavior of Additive Manufactured Ti–6Al–4V Alloy Ultrasonic Punching with Inkjet-Printed Dot Array for Fabrication of Perforated Metal Pattern as Transparent Heater Self-Healing Waterborne Polyurethanes as a Sustainable Gel Electrolyte for Flexible Electrochromic Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1