Runai Quan, Huibo Hong, Xiao Xiang, Mingtao Cao, Xinghua Li, Baihong Li, Ruifang Dong, Tao Liu and Shougang Zhang
{"title":"增强量子时间传输安全性:利用能量-时间纠缠检测拦截-发送攻击","authors":"Runai Quan, Huibo Hong, Xiao Xiang, Mingtao Cao, Xinghua Li, Baihong Li, Ruifang Dong, Tao Liu and Shougang Zhang","doi":"10.1088/1367-2630/ad7634","DOIUrl":null,"url":null,"abstract":"Quantum time transfer has emerged as a powerful technique, offering sub-picosecond precision and inherent security through the nonlocal temporal correlation property of energy-time entangled biphoton sources. In this paper, we demonstrate the inherent security advantage of quantum time transfer, and the utilization in detecting potential intercept-resend attacks. By investigating the impact of these attacks on the nonlocality identifier associated with nonlocal dispersion cancellation of energy-time entanglement, we establish a security threshold model for detecting intercept-resend attacks. Experimental verification on a 102 km fiber-optic link confirms that even a malicious delay as small as 25 ps can be identified. This investigation serves as a compelling illustration of secure two-way time transfer, safeguarding against intercept-resend attacks, and showcasing its potential applications in fields reliant on authentic time distribution between remote parties.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing quantum time transfer security: detecting intercept-resend attacks with energy-time entanglement\",\"authors\":\"Runai Quan, Huibo Hong, Xiao Xiang, Mingtao Cao, Xinghua Li, Baihong Li, Ruifang Dong, Tao Liu and Shougang Zhang\",\"doi\":\"10.1088/1367-2630/ad7634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum time transfer has emerged as a powerful technique, offering sub-picosecond precision and inherent security through the nonlocal temporal correlation property of energy-time entangled biphoton sources. In this paper, we demonstrate the inherent security advantage of quantum time transfer, and the utilization in detecting potential intercept-resend attacks. By investigating the impact of these attacks on the nonlocality identifier associated with nonlocal dispersion cancellation of energy-time entanglement, we establish a security threshold model for detecting intercept-resend attacks. Experimental verification on a 102 km fiber-optic link confirms that even a malicious delay as small as 25 ps can be identified. This investigation serves as a compelling illustration of secure two-way time transfer, safeguarding against intercept-resend attacks, and showcasing its potential applications in fields reliant on authentic time distribution between remote parties.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1367-2630/ad7634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad7634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Enhancing quantum time transfer security: detecting intercept-resend attacks with energy-time entanglement
Quantum time transfer has emerged as a powerful technique, offering sub-picosecond precision and inherent security through the nonlocal temporal correlation property of energy-time entangled biphoton sources. In this paper, we demonstrate the inherent security advantage of quantum time transfer, and the utilization in detecting potential intercept-resend attacks. By investigating the impact of these attacks on the nonlocality identifier associated with nonlocal dispersion cancellation of energy-time entanglement, we establish a security threshold model for detecting intercept-resend attacks. Experimental verification on a 102 km fiber-optic link confirms that even a malicious delay as small as 25 ps can be identified. This investigation serves as a compelling illustration of secure two-way time transfer, safeguarding against intercept-resend attacks, and showcasing its potential applications in fields reliant on authentic time distribution between remote parties.