谐波链条码和稳定性

Salman Parsa, Bei Wang
{"title":"谐波链条码和稳定性","authors":"Salman Parsa, Bei Wang","doi":"arxiv-2409.06093","DOIUrl":null,"url":null,"abstract":"The persistence barcode is a topological descriptor of data that plays a\nfundamental role in topological data analysis. Given a filtration of the space\nof data, a persistence barcode tracks the evolution of its homological\nfeatures. In this paper, we introduce a novel type of barcode, referred to as\nthe canonical barcode of harmonic chains, or harmonic chain barcode for short,\nwhich tracks the evolution of harmonic chains. As our main result, we show that\nthe harmonic chain barcode is stable and it captures both geometric and\ntopological information of data. Moreover, given a filtration of a simplicial\ncomplex of size $n$ with $m$ time steps, we can compute its harmonic chain\nbarcode in $O(m^2n^{\\omega} + mn^3)$ time, where $n^\\omega$ is the matrix\nmultiplication time. Consequently, a harmonic chain barcode can be utilized in\napplications in which a persistence barcode is applicable, such as feature\nvectorization and machine learning. Our work provides strong evidence in a\ngrowing list of literature that geometric (not just topological) information\ncan be recovered from a persistence filtration.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmonic Chain Barcode and Stability\",\"authors\":\"Salman Parsa, Bei Wang\",\"doi\":\"arxiv-2409.06093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The persistence barcode is a topological descriptor of data that plays a\\nfundamental role in topological data analysis. Given a filtration of the space\\nof data, a persistence barcode tracks the evolution of its homological\\nfeatures. In this paper, we introduce a novel type of barcode, referred to as\\nthe canonical barcode of harmonic chains, or harmonic chain barcode for short,\\nwhich tracks the evolution of harmonic chains. As our main result, we show that\\nthe harmonic chain barcode is stable and it captures both geometric and\\ntopological information of data. Moreover, given a filtration of a simplicial\\ncomplex of size $n$ with $m$ time steps, we can compute its harmonic chain\\nbarcode in $O(m^2n^{\\\\omega} + mn^3)$ time, where $n^\\\\omega$ is the matrix\\nmultiplication time. Consequently, a harmonic chain barcode can be utilized in\\napplications in which a persistence barcode is applicable, such as feature\\nvectorization and machine learning. Our work provides strong evidence in a\\ngrowing list of literature that geometric (not just topological) information\\ncan be recovered from a persistence filtration.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

持久性条形码是数据的拓扑描述符,在拓扑数据分析中发挥着重要作用。给定数据空间的过滤后,持久性条形码会跟踪其同调特征的演变。在本文中,我们引入了一种新型条形码,称为谐波链典型条形码,简称谐波链条形码,它可以跟踪谐波链的演变。我们的主要结果表明,谐波链条形码是稳定的,它能捕捉数据的几何和拓扑信息。此外,给定一个大小为$n$、时间步长为$m$的简单复合物的滤波,我们可以在$O(m^2n^{\omega} + mn^3)$的时间内计算出它的谐波链条形码,其中$n^\omega$是矩阵乘法时间。因此,谐波链条形码可用于持久性条形码适用的应用领域,如特征矢量化和机器学习。我们的研究为越来越多的文献提供了有力的证据,证明几何信息(而不仅仅是拓扑信息)可以从持久性过滤中恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Harmonic Chain Barcode and Stability
The persistence barcode is a topological descriptor of data that plays a fundamental role in topological data analysis. Given a filtration of the space of data, a persistence barcode tracks the evolution of its homological features. In this paper, we introduce a novel type of barcode, referred to as the canonical barcode of harmonic chains, or harmonic chain barcode for short, which tracks the evolution of harmonic chains. As our main result, we show that the harmonic chain barcode is stable and it captures both geometric and topological information of data. Moreover, given a filtration of a simplicial complex of size $n$ with $m$ time steps, we can compute its harmonic chain barcode in $O(m^2n^{\omega} + mn^3)$ time, where $n^\omega$ is the matrix multiplication time. Consequently, a harmonic chain barcode can be utilized in applications in which a persistence barcode is applicable, such as feature vectorization and machine learning. Our work provides strong evidence in a growing list of literature that geometric (not just topological) information can be recovered from a persistence filtration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Minimum Plane Bichromatic Spanning Trees Evolving Distributions Under Local Motion New Lower Bound and Algorithms for Online Geometric Hitting Set Problem Computing shortest paths amid non-overlapping weighted disks Fast Comparative Analysis of Merge Trees Using Locality Sensitive Hashing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1