Imane Hammou Ou Ali, Ali Agga, Mohammed Ouassaid, Mohamed Maaroufi, Ali Elrashidi, Hossam Kotb
{"title":"利用混合深度学习模型预测智能家居的短期能源使用情况","authors":"Imane Hammou Ou Ali, Ali Agga, Mohammed Ouassaid, Mohamed Maaroufi, Ali Elrashidi, Hossam Kotb","doi":"10.3389/fenrg.2024.1323357","DOIUrl":null,"url":null,"abstract":"The forecasting of home energy consumption is a crucial and challenging topic within the realm of artificial intelligence (AI)-enhanced energy management in smart grids (SGs). The primary goal of this study is to provide accurate energy consumption forecasts for a smart home. Two deep learning models are implemented: ConvLSTM, which combines convolutional operations with Long Short-Term Memory (LSTM), and the CNN-LSTM model, which synergizes Convolutional Neural Networks (CNN) and LSTM networks. Both hybrid models offer a comprehensive approach to modeling complex relationships in spatial and temporal patterns. Additionally, two baseline models—LSTM and CNN—are employed for comparative analysis. Utilizing real data from a smart home in Houston, Texas, the results demonstrate that both the hybrid models deliver highly accurate predictions for energy consumption. However, the ConvLSTM model outperforms all proposed models, improving predictions in terms of mean absolute percentage error by 4.52%, 9.59%, and 10.53% for 1 day, 3 days, and 6 days in advance, respectively.","PeriodicalId":12428,"journal":{"name":"Frontiers in Energy Research","volume":"417 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting short-term energy usage in a smart home using hybrid deep learning models\",\"authors\":\"Imane Hammou Ou Ali, Ali Agga, Mohammed Ouassaid, Mohamed Maaroufi, Ali Elrashidi, Hossam Kotb\",\"doi\":\"10.3389/fenrg.2024.1323357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The forecasting of home energy consumption is a crucial and challenging topic within the realm of artificial intelligence (AI)-enhanced energy management in smart grids (SGs). The primary goal of this study is to provide accurate energy consumption forecasts for a smart home. Two deep learning models are implemented: ConvLSTM, which combines convolutional operations with Long Short-Term Memory (LSTM), and the CNN-LSTM model, which synergizes Convolutional Neural Networks (CNN) and LSTM networks. Both hybrid models offer a comprehensive approach to modeling complex relationships in spatial and temporal patterns. Additionally, two baseline models—LSTM and CNN—are employed for comparative analysis. Utilizing real data from a smart home in Houston, Texas, the results demonstrate that both the hybrid models deliver highly accurate predictions for energy consumption. However, the ConvLSTM model outperforms all proposed models, improving predictions in terms of mean absolute percentage error by 4.52%, 9.59%, and 10.53% for 1 day, 3 days, and 6 days in advance, respectively.\",\"PeriodicalId\":12428,\"journal\":{\"name\":\"Frontiers in Energy Research\",\"volume\":\"417 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fenrg.2024.1323357\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fenrg.2024.1323357","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Predicting short-term energy usage in a smart home using hybrid deep learning models
The forecasting of home energy consumption is a crucial and challenging topic within the realm of artificial intelligence (AI)-enhanced energy management in smart grids (SGs). The primary goal of this study is to provide accurate energy consumption forecasts for a smart home. Two deep learning models are implemented: ConvLSTM, which combines convolutional operations with Long Short-Term Memory (LSTM), and the CNN-LSTM model, which synergizes Convolutional Neural Networks (CNN) and LSTM networks. Both hybrid models offer a comprehensive approach to modeling complex relationships in spatial and temporal patterns. Additionally, two baseline models—LSTM and CNN—are employed for comparative analysis. Utilizing real data from a smart home in Houston, Texas, the results demonstrate that both the hybrid models deliver highly accurate predictions for energy consumption. However, the ConvLSTM model outperforms all proposed models, improving predictions in terms of mean absolute percentage error by 4.52%, 9.59%, and 10.53% for 1 day, 3 days, and 6 days in advance, respectively.
期刊介绍:
Frontiers in Energy Research makes use of the unique Frontiers platform for open-access publishing and research networking for scientists, which provides an equal opportunity to seek, share and create knowledge. The mission of Frontiers is to place publishing back in the hands of working scientists and to promote an interactive, fair, and efficient review process. Articles are peer-reviewed according to the Frontiers review guidelines, which evaluate manuscripts on objective editorial criteria