基于多源信息融合的母线故障诊断方法

IF 2.6 4区 工程技术 Q3 ENERGY & FUELS Frontiers in Energy Research Pub Date : 2024-09-04 DOI:10.3389/fenrg.2024.1443570
Xuebao Jiang, Haiou Cao, Chenbin Zhou, Xuchao Ren, Jiaoxiao Shen, Jiayan Yu
{"title":"基于多源信息融合的母线故障诊断方法","authors":"Xuebao Jiang, Haiou Cao, Chenbin Zhou, Xuchao Ren, Jiaoxiao Shen, Jiayan Yu","doi":"10.3389/fenrg.2024.1443570","DOIUrl":null,"url":null,"abstract":"Against the backdrop of smart grid development, the electric power system demands higher accuracy and comprehensiveness in fault analysis. Establishing a digital twin platform for multiple equipment faults represents the future direction of power system development. Presently, while many researchers employ artificial intelligence algorithms to diagnose faults in key equipment such as transmission lines and transformers, intelligent diagnostic methods for busbar faults remain insufficient. Therefore, this paper proposes a busbar fault diagnosis method based on multi-source information fusion. Initially, the diagnostic method for busbar faults is explored, conducting both time-domain and frequency-domain analyses on simulated fault data. The data of this model are optimized using Dempster-Shafer evidence theory to enhance algorithm training speed. Subsequently, BP neural network training is implemented. Finally, validation testing of fault data demonstrates a fault recognition accuracy of 99.1% for this method. Experimental results illustrate the method’s feasibility and low computational costs, thereby advancing the development of digital twin platforms for power system fault diagnosis.","PeriodicalId":12428,"journal":{"name":"Frontiers in Energy Research","volume":"72 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Busbar fault diagnosis method based on multi-source information fusion\",\"authors\":\"Xuebao Jiang, Haiou Cao, Chenbin Zhou, Xuchao Ren, Jiaoxiao Shen, Jiayan Yu\",\"doi\":\"10.3389/fenrg.2024.1443570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Against the backdrop of smart grid development, the electric power system demands higher accuracy and comprehensiveness in fault analysis. Establishing a digital twin platform for multiple equipment faults represents the future direction of power system development. Presently, while many researchers employ artificial intelligence algorithms to diagnose faults in key equipment such as transmission lines and transformers, intelligent diagnostic methods for busbar faults remain insufficient. Therefore, this paper proposes a busbar fault diagnosis method based on multi-source information fusion. Initially, the diagnostic method for busbar faults is explored, conducting both time-domain and frequency-domain analyses on simulated fault data. The data of this model are optimized using Dempster-Shafer evidence theory to enhance algorithm training speed. Subsequently, BP neural network training is implemented. Finally, validation testing of fault data demonstrates a fault recognition accuracy of 99.1% for this method. Experimental results illustrate the method’s feasibility and low computational costs, thereby advancing the development of digital twin platforms for power system fault diagnosis.\",\"PeriodicalId\":12428,\"journal\":{\"name\":\"Frontiers in Energy Research\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fenrg.2024.1443570\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fenrg.2024.1443570","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在智能电网发展的背景下,电力系统对故障分析的准确性和全面性提出了更高的要求。建立多设备故障数字孪生平台是未来电力系统发展的方向。目前,许多研究人员采用人工智能算法诊断输电线路和变压器等关键设备的故障,但母线故障的智能诊断方法仍然不足。因此,本文提出了一种基于多源信息融合的母线故障诊断方法。首先,探讨了母线故障诊断方法,对模拟故障数据进行了时域和频域分析。利用 Dempster-Shafer 证据理论对该模型的数据进行了优化,以提高算法训练速度。随后,实施了 BP 神经网络训练。最后,故障数据的验证测试表明,该方法的故障识别准确率达到 99.1%。实验结果表明了该方法的可行性和低计算成本,从而推动了用于电力系统故障诊断的数字孪生平台的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Busbar fault diagnosis method based on multi-source information fusion
Against the backdrop of smart grid development, the electric power system demands higher accuracy and comprehensiveness in fault analysis. Establishing a digital twin platform for multiple equipment faults represents the future direction of power system development. Presently, while many researchers employ artificial intelligence algorithms to diagnose faults in key equipment such as transmission lines and transformers, intelligent diagnostic methods for busbar faults remain insufficient. Therefore, this paper proposes a busbar fault diagnosis method based on multi-source information fusion. Initially, the diagnostic method for busbar faults is explored, conducting both time-domain and frequency-domain analyses on simulated fault data. The data of this model are optimized using Dempster-Shafer evidence theory to enhance algorithm training speed. Subsequently, BP neural network training is implemented. Finally, validation testing of fault data demonstrates a fault recognition accuracy of 99.1% for this method. Experimental results illustrate the method’s feasibility and low computational costs, thereby advancing the development of digital twin platforms for power system fault diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Energy Research
Frontiers in Energy Research Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
3.90
自引率
11.80%
发文量
1727
审稿时长
12 weeks
期刊介绍: Frontiers in Energy Research makes use of the unique Frontiers platform for open-access publishing and research networking for scientists, which provides an equal opportunity to seek, share and create knowledge. The mission of Frontiers is to place publishing back in the hands of working scientists and to promote an interactive, fair, and efficient review process. Articles are peer-reviewed according to the Frontiers review guidelines, which evaluate manuscripts on objective editorial criteria
期刊最新文献
Grid-integrated solutions for sustainable EV charging: a comparative study of renewable energy and battery storage systems Research on the impact of digitalization on energy companies’ green transition: new insights from China Multi-objective-based economic and emission dispatch with integration of wind energy sources using different optimization algorithms Demand-side management scenario analysis for the energy-efficient future of Pakistan: Bridging the gap between market interests and national priorities Modeling and scheduling of utility-scale energy storage toward high-share renewable coordination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1