基于原位测试的双 U 型管地面换热器传热模型研究

IF 2.6 4区 工程技术 Q3 ENERGY & FUELS Frontiers in Energy Research Pub Date : 2024-08-29 DOI:10.3389/fenrg.2024.1442185
Ruifeng Wang, Mingchuan Shi, Ke Zhu, Jun Yu, Wei Ren, Guohong Yan, Zhiqiang Yin, Shujie Gao
{"title":"基于原位测试的双 U 型管地面换热器传热模型研究","authors":"Ruifeng Wang, Mingchuan Shi, Ke Zhu, Jun Yu, Wei Ren, Guohong Yan, Zhiqiang Yin, Shujie Gao","doi":"10.3389/fenrg.2024.1442185","DOIUrl":null,"url":null,"abstract":"The Double U-pipe ground heat exchanger, known for its simple process, cost-effectiveness, high heat exchange efficiency, and low thermal resistance, remains the predominant type of ground heat exchanger in today’s shallow geothermal energy development and utilization. In recent years, significant research has focused on the factors influencing heat transfer and the heat exchange performance of Double U-pipe ground heat exchangers through experimental testing methods. However, studies that integrate numerical simulation with <jats:italic>in situ</jats:italic> testing have been less common. Utilizing the cylindrical heat source model theory and the results of regional <jats:italic>in situ</jats:italic> thermal response tests, this paper develops a Double U-pipe ground heat transfer model by establishing physical, mathematical, and heat transfer geometric models. It evaluates the effects of varying inlet temperatures, flow rates, and initial ground temperatures on heat exchange efficiency under heating conditions. The results confirm the accuracy of the Double U-pipe ground heat exchanger model based on <jats:italic>in situ</jats:italic> testing. They indicate that increasing the temperature differential between the inlet and initial temperatures, raising the initial ground temperature, and moderately enhancing the flow rate can improve the system’s heat exchange efficiency.","PeriodicalId":12428,"journal":{"name":"Frontiers in Energy Research","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the heat transfer model of double U-pipe ground heat exchanger based on in-situ testing\",\"authors\":\"Ruifeng Wang, Mingchuan Shi, Ke Zhu, Jun Yu, Wei Ren, Guohong Yan, Zhiqiang Yin, Shujie Gao\",\"doi\":\"10.3389/fenrg.2024.1442185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Double U-pipe ground heat exchanger, known for its simple process, cost-effectiveness, high heat exchange efficiency, and low thermal resistance, remains the predominant type of ground heat exchanger in today’s shallow geothermal energy development and utilization. In recent years, significant research has focused on the factors influencing heat transfer and the heat exchange performance of Double U-pipe ground heat exchangers through experimental testing methods. However, studies that integrate numerical simulation with <jats:italic>in situ</jats:italic> testing have been less common. Utilizing the cylindrical heat source model theory and the results of regional <jats:italic>in situ</jats:italic> thermal response tests, this paper develops a Double U-pipe ground heat transfer model by establishing physical, mathematical, and heat transfer geometric models. It evaluates the effects of varying inlet temperatures, flow rates, and initial ground temperatures on heat exchange efficiency under heating conditions. The results confirm the accuracy of the Double U-pipe ground heat exchanger model based on <jats:italic>in situ</jats:italic> testing. They indicate that increasing the temperature differential between the inlet and initial temperatures, raising the initial ground temperature, and moderately enhancing the flow rate can improve the system’s heat exchange efficiency.\",\"PeriodicalId\":12428,\"journal\":{\"name\":\"Frontiers in Energy Research\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fenrg.2024.1442185\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fenrg.2024.1442185","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

双 U 管地热交换器以其工艺简单、成本效益高、热交换效率高、热阻小而著称,仍是当今浅层地热能开发利用中最主要的地热交换器类型。近年来,通过实验测试方法对双 U 型管地热交换器的传热影响因素和热交换性能进行了大量研究。然而,将数值模拟与现场测试相结合的研究却并不多见。本文利用圆柱热源模型理论和区域原位热响应测试结果,通过建立物理、数学和传热几何模型,开发了双 U 型管地面传热模型。它评估了在供暖条件下,不同的入口温度、流速和初始地温对热交换效率的影响。结果证实了基于现场测试的双 U 型管地热交换器模型的准确性。结果表明,增大入口温度与初始温度之间的温差、提高初始地温以及适度提高流速可以提高系统的热交换效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on the heat transfer model of double U-pipe ground heat exchanger based on in-situ testing
The Double U-pipe ground heat exchanger, known for its simple process, cost-effectiveness, high heat exchange efficiency, and low thermal resistance, remains the predominant type of ground heat exchanger in today’s shallow geothermal energy development and utilization. In recent years, significant research has focused on the factors influencing heat transfer and the heat exchange performance of Double U-pipe ground heat exchangers through experimental testing methods. However, studies that integrate numerical simulation with in situ testing have been less common. Utilizing the cylindrical heat source model theory and the results of regional in situ thermal response tests, this paper develops a Double U-pipe ground heat transfer model by establishing physical, mathematical, and heat transfer geometric models. It evaluates the effects of varying inlet temperatures, flow rates, and initial ground temperatures on heat exchange efficiency under heating conditions. The results confirm the accuracy of the Double U-pipe ground heat exchanger model based on in situ testing. They indicate that increasing the temperature differential between the inlet and initial temperatures, raising the initial ground temperature, and moderately enhancing the flow rate can improve the system’s heat exchange efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Energy Research
Frontiers in Energy Research Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
3.90
自引率
11.80%
发文量
1727
审稿时长
12 weeks
期刊介绍: Frontiers in Energy Research makes use of the unique Frontiers platform for open-access publishing and research networking for scientists, which provides an equal opportunity to seek, share and create knowledge. The mission of Frontiers is to place publishing back in the hands of working scientists and to promote an interactive, fair, and efficient review process. Articles are peer-reviewed according to the Frontiers review guidelines, which evaluate manuscripts on objective editorial criteria
期刊最新文献
Grid-integrated solutions for sustainable EV charging: a comparative study of renewable energy and battery storage systems Research on the impact of digitalization on energy companies’ green transition: new insights from China Multi-objective-based economic and emission dispatch with integration of wind energy sources using different optimization algorithms Demand-side management scenario analysis for the energy-efficient future of Pakistan: Bridging the gap between market interests and national priorities Modeling and scheduling of utility-scale energy storage toward high-share renewable coordination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1