{"title":"基于分析目标级联的 CCHP 多微网主动配电网经济优化调度","authors":"Yongbiao Yang, Dengxin Ai, Li Zhang, Yawen Zheng","doi":"10.3389/fenrg.2024.1438961","DOIUrl":null,"url":null,"abstract":"When multiple CCHP microgrids are integrated into an active distribution network (ADN), the microgrids and the distribution network serve as distinct stakeholders, making the economic optimal dispatch of the system more complex. This paper proposes a distributed dispatch model of ADN with CCHP multi-microgrid, and refines the objective functions of each region. The analytical target cascading approach (ATC) is employed to model the power transaction as virtual sources/loads, and solve the optimal dispatch in parallel. Case studies demonstrate the proposed distributed model is capable of achieving economic optimization for both stakeholders.","PeriodicalId":12428,"journal":{"name":"Frontiers in Energy Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Economic optimal dispatch of active distribution network with CCHP multi-microgrid based on analytical target cascading\",\"authors\":\"Yongbiao Yang, Dengxin Ai, Li Zhang, Yawen Zheng\",\"doi\":\"10.3389/fenrg.2024.1438961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When multiple CCHP microgrids are integrated into an active distribution network (ADN), the microgrids and the distribution network serve as distinct stakeholders, making the economic optimal dispatch of the system more complex. This paper proposes a distributed dispatch model of ADN with CCHP multi-microgrid, and refines the objective functions of each region. The analytical target cascading approach (ATC) is employed to model the power transaction as virtual sources/loads, and solve the optimal dispatch in parallel. Case studies demonstrate the proposed distributed model is capable of achieving economic optimization for both stakeholders.\",\"PeriodicalId\":12428,\"journal\":{\"name\":\"Frontiers in Energy Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fenrg.2024.1438961\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fenrg.2024.1438961","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Economic optimal dispatch of active distribution network with CCHP multi-microgrid based on analytical target cascading
When multiple CCHP microgrids are integrated into an active distribution network (ADN), the microgrids and the distribution network serve as distinct stakeholders, making the economic optimal dispatch of the system more complex. This paper proposes a distributed dispatch model of ADN with CCHP multi-microgrid, and refines the objective functions of each region. The analytical target cascading approach (ATC) is employed to model the power transaction as virtual sources/loads, and solve the optimal dispatch in parallel. Case studies demonstrate the proposed distributed model is capable of achieving economic optimization for both stakeholders.
期刊介绍:
Frontiers in Energy Research makes use of the unique Frontiers platform for open-access publishing and research networking for scientists, which provides an equal opportunity to seek, share and create knowledge. The mission of Frontiers is to place publishing back in the hands of working scientists and to promote an interactive, fair, and efficient review process. Articles are peer-reviewed according to the Frontiers review guidelines, which evaluate manuscripts on objective editorial criteria