{"title":"考虑 5G 基站集群的分配网络双层优化策略","authors":"Zhipeng Lv, Bingjian Jia, Zhenhao Song, Fei Yang, Shan Zhou","doi":"10.3389/fenrg.2024.1454382","DOIUrl":null,"url":null,"abstract":"The reliability of the power supply for 5G base stations (BSs) is increasing. A large amount of BS backup energy storage (BES) remains underutilized. This study establishes a double-layer optimization distribution network (DN) considering BS clusters. An energy consumption characteristics and scheduling ability model of the BSs was established to address the differences in the characteristics of different traffic flows. A double-tier planning model for BS-joining grid market ancillary services is proposed. The upper-layer model addresses optimal tidal flow problems in DNs to minimize integrated operating costs, while the lower-layer model focuses on BES economic optimization. The double-layer model changes into a single-layer linear model using the Karush–Kuhn–Tucker (KKT) condition and the Big M method. Simulation validation using the IEEE-33 node DN proves that this approach can reduce DN operating costs, regulate voltage fluctuations, and guarantee economical and safe DN operation.","PeriodicalId":12428,"journal":{"name":"Frontiers in Energy Research","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A double-layer optimization strategy for distribution networks considering 5G base station clusters\",\"authors\":\"Zhipeng Lv, Bingjian Jia, Zhenhao Song, Fei Yang, Shan Zhou\",\"doi\":\"10.3389/fenrg.2024.1454382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reliability of the power supply for 5G base stations (BSs) is increasing. A large amount of BS backup energy storage (BES) remains underutilized. This study establishes a double-layer optimization distribution network (DN) considering BS clusters. An energy consumption characteristics and scheduling ability model of the BSs was established to address the differences in the characteristics of different traffic flows. A double-tier planning model for BS-joining grid market ancillary services is proposed. The upper-layer model addresses optimal tidal flow problems in DNs to minimize integrated operating costs, while the lower-layer model focuses on BES economic optimization. The double-layer model changes into a single-layer linear model using the Karush–Kuhn–Tucker (KKT) condition and the Big M method. Simulation validation using the IEEE-33 node DN proves that this approach can reduce DN operating costs, regulate voltage fluctuations, and guarantee economical and safe DN operation.\",\"PeriodicalId\":12428,\"journal\":{\"name\":\"Frontiers in Energy Research\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fenrg.2024.1454382\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fenrg.2024.1454382","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
5G 基站(BS)的供电可靠性要求越来越高。大量基站备用储能(BES)仍未得到充分利用。本研究建立了一个考虑到 BS 集群的双层优化配电网络(DN)。针对不同流量特征的差异,建立了 BS 的能耗特征和调度能力模型。提出了 BS 加入电网市场辅助服务的双层规划模型。上层模型解决 DNs 的最优潮流问题,以最小化综合运营成本,而下层模型则侧重于 BES 的经济优化。利用 Karush-Kuhn-Tucker (KKT) 条件和 Big M 方法,双层模型变为单层线性模型。利用 IEEE-33 节点 DN 进行的仿真验证证明,这种方法可以降低 DN 运行成本,调节电压波动,并保证 DN 运行的经济性和安全性。
A double-layer optimization strategy for distribution networks considering 5G base station clusters
The reliability of the power supply for 5G base stations (BSs) is increasing. A large amount of BS backup energy storage (BES) remains underutilized. This study establishes a double-layer optimization distribution network (DN) considering BS clusters. An energy consumption characteristics and scheduling ability model of the BSs was established to address the differences in the characteristics of different traffic flows. A double-tier planning model for BS-joining grid market ancillary services is proposed. The upper-layer model addresses optimal tidal flow problems in DNs to minimize integrated operating costs, while the lower-layer model focuses on BES economic optimization. The double-layer model changes into a single-layer linear model using the Karush–Kuhn–Tucker (KKT) condition and the Big M method. Simulation validation using the IEEE-33 node DN proves that this approach can reduce DN operating costs, regulate voltage fluctuations, and guarantee economical and safe DN operation.
期刊介绍:
Frontiers in Energy Research makes use of the unique Frontiers platform for open-access publishing and research networking for scientists, which provides an equal opportunity to seek, share and create knowledge. The mission of Frontiers is to place publishing back in the hands of working scientists and to promote an interactive, fair, and efficient review process. Articles are peer-reviewed according to the Frontiers review guidelines, which evaluate manuscripts on objective editorial criteria