基于集合学习和特征选择的配电网线损预测研究

IF 2.6 4区 工程技术 Q3 ENERGY & FUELS Frontiers in Energy Research Pub Date : 2024-08-23 DOI:10.3389/fenrg.2024.1453039
Ke Zhang, Yongwang Zhang, Jian Li, Zetao Jiang, Yuxin Lu, Binghui Zhao
{"title":"基于集合学习和特征选择的配电网线损预测研究","authors":"Ke Zhang, Yongwang Zhang, Jian Li, Zetao Jiang, Yuxin Lu, Binghui Zhao","doi":"10.3389/fenrg.2024.1453039","DOIUrl":null,"url":null,"abstract":"IntroductionAccurate prediction of line losses in distribution networks is crucial for optimizing power system planning and network restructuring, as these losses significantly impact grid operation quality. This paper proposes a novel approach that combines advanced feature selection techniques with Stacking ensemble learning to enhance the effectiveness of distribution network loss analysis and assessment.MethodsUtilizing data from 44 substations over an 18-month period, we integrated a Stacking ensemble learning model with multiple feature selection methods, including correlation coefficient, maximum information coefficient, and tree-based techniques. These methods were employed to identify the key predictors of power loss in the distribution network.ResultsThe proposed model achieved a Mean Absolute Percentage Error (MAPE) of 3.78% and a Root Mean Square Error (RMSE) of 1.53, demonstrating a substantial improvement over traditional linear regression-based prediction methods. The analysis revealed that historical line loss and line active power were the most influential predictive variables, while the inclusion of time-related features further refined the model's performance.DiscussionThis study highlights the efficacy of combining multiple feature selection methods with Stacking ensemble learning for predicting power loss in 10 kV distribution networks. The enhanced accuracy and reliability of the proposed model offer valuable insights for electrical engineering applications, potentially contributing to more efficient and sustainable energy distribution systems. Future research could explore the applicability of this approach to other distribution network voltage levels and investigate the incorporation of additional environmental and network-specific factors to further improve power loss prediction.","PeriodicalId":12428,"journal":{"name":"Frontiers in Energy Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on line loss prediction of distribution network based on ensemble learning and feature selection\",\"authors\":\"Ke Zhang, Yongwang Zhang, Jian Li, Zetao Jiang, Yuxin Lu, Binghui Zhao\",\"doi\":\"10.3389/fenrg.2024.1453039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IntroductionAccurate prediction of line losses in distribution networks is crucial for optimizing power system planning and network restructuring, as these losses significantly impact grid operation quality. This paper proposes a novel approach that combines advanced feature selection techniques with Stacking ensemble learning to enhance the effectiveness of distribution network loss analysis and assessment.MethodsUtilizing data from 44 substations over an 18-month period, we integrated a Stacking ensemble learning model with multiple feature selection methods, including correlation coefficient, maximum information coefficient, and tree-based techniques. These methods were employed to identify the key predictors of power loss in the distribution network.ResultsThe proposed model achieved a Mean Absolute Percentage Error (MAPE) of 3.78% and a Root Mean Square Error (RMSE) of 1.53, demonstrating a substantial improvement over traditional linear regression-based prediction methods. The analysis revealed that historical line loss and line active power were the most influential predictive variables, while the inclusion of time-related features further refined the model's performance.DiscussionThis study highlights the efficacy of combining multiple feature selection methods with Stacking ensemble learning for predicting power loss in 10 kV distribution networks. The enhanced accuracy and reliability of the proposed model offer valuable insights for electrical engineering applications, potentially contributing to more efficient and sustainable energy distribution systems. Future research could explore the applicability of this approach to other distribution network voltage levels and investigate the incorporation of additional environmental and network-specific factors to further improve power loss prediction.\",\"PeriodicalId\":12428,\"journal\":{\"name\":\"Frontiers in Energy Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fenrg.2024.1453039\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fenrg.2024.1453039","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

导言准确预测配电网络中的线损对于优化电力系统规划和网络重组至关重要,因为这些损耗会严重影响电网运行质量。本文提出了一种新方法,将先进的特征选择技术与堆叠集合学习相结合,以提高配电网损耗分析和评估的有效性。方法利用 44 个变电站 18 个月的数据,我们将堆叠集合学习模型与多种特征选择方法相结合,包括相关系数、最大信息系数和基于树的技术。结果该模型的平均绝对百分比误差 (MAPE) 为 3.78%,均方根误差 (RMSE) 为 1.53,与传统的基于线性回归的预测方法相比有了显著改善。分析表明,历史线损和线路有功功率是最有影响力的预测变量,而时间相关特征的加入则进一步完善了模型的性能。 讨论 本研究强调了将多种特征选择方法与堆叠集合学习相结合预测 10 千伏配电网电能损耗的功效。所提模型的准确性和可靠性得到了提高,为电气工程应用提供了宝贵的见解,可能有助于提高配电系统的效率和可持续性。未来的研究可以探索这种方法在其他配电网络电压等级中的适用性,并研究纳入其他环境和网络特定因素以进一步改进功率损耗预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on line loss prediction of distribution network based on ensemble learning and feature selection
IntroductionAccurate prediction of line losses in distribution networks is crucial for optimizing power system planning and network restructuring, as these losses significantly impact grid operation quality. This paper proposes a novel approach that combines advanced feature selection techniques with Stacking ensemble learning to enhance the effectiveness of distribution network loss analysis and assessment.MethodsUtilizing data from 44 substations over an 18-month period, we integrated a Stacking ensemble learning model with multiple feature selection methods, including correlation coefficient, maximum information coefficient, and tree-based techniques. These methods were employed to identify the key predictors of power loss in the distribution network.ResultsThe proposed model achieved a Mean Absolute Percentage Error (MAPE) of 3.78% and a Root Mean Square Error (RMSE) of 1.53, demonstrating a substantial improvement over traditional linear regression-based prediction methods. The analysis revealed that historical line loss and line active power were the most influential predictive variables, while the inclusion of time-related features further refined the model's performance.DiscussionThis study highlights the efficacy of combining multiple feature selection methods with Stacking ensemble learning for predicting power loss in 10 kV distribution networks. The enhanced accuracy and reliability of the proposed model offer valuable insights for electrical engineering applications, potentially contributing to more efficient and sustainable energy distribution systems. Future research could explore the applicability of this approach to other distribution network voltage levels and investigate the incorporation of additional environmental and network-specific factors to further improve power loss prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Energy Research
Frontiers in Energy Research Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
3.90
自引率
11.80%
发文量
1727
审稿时长
12 weeks
期刊介绍: Frontiers in Energy Research makes use of the unique Frontiers platform for open-access publishing and research networking for scientists, which provides an equal opportunity to seek, share and create knowledge. The mission of Frontiers is to place publishing back in the hands of working scientists and to promote an interactive, fair, and efficient review process. Articles are peer-reviewed according to the Frontiers review guidelines, which evaluate manuscripts on objective editorial criteria
期刊最新文献
Grid-integrated solutions for sustainable EV charging: a comparative study of renewable energy and battery storage systems Research on the impact of digitalization on energy companies’ green transition: new insights from China Multi-objective-based economic and emission dispatch with integration of wind energy sources using different optimization algorithms Demand-side management scenario analysis for the energy-efficient future of Pakistan: Bridging the gap between market interests and national priorities Modeling and scheduling of utility-scale energy storage toward high-share renewable coordination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1