基于表面与基于体素的头部有限元模型:应变响应对比分析

Zhou Zhou, Xiaogai Li, Svein Kleiven
{"title":"基于表面与基于体素的头部有限元模型:应变响应对比分析","authors":"Zhou Zhou, Xiaogai Li, Svein Kleiven","doi":"10.1101/2024.09.04.611159","DOIUrl":null,"url":null,"abstract":"Finite element (FE) models of the human head are important injury assessment tools but developing a high-quality, hexahedral-meshed FE head model without compromising geometric accuracy is a challenging task. Important brain features, such as the cortical folds and ventricles, were captured only in a handful of FE head models that were primarily developed from two meshing techniques, i.e., surface-based meshing with conforming elements to capture the interfacial boundaries and voxel-based meshing by converting the segmented voxels into elements with and without meshing smoothing. Despite these advancements, little knowledge existed of how similar the strain responses were between surface- and voxel-based FE head models. To address this, a previously developed surface-based head model with conforming meshes to capture the cortical folds-subarachnoid cerebrospinal fluid and brain-ventricle interfaces was reused, and two voxel-based models with and without mesh smoothing were newly created here. These three models were employed to simulate head impacts. The results showed remarkable similarities in the strain responses between the surface- and the voxel-based models. When calculating commonly used injury metrics, including the percentile strains below the maximum (e.g., 95 percentile strain) and the volume of brain element with the strain over certain thresholds, the responses of the three models were virtually identical. When examining the strain distribution, the three models showed different patterns at the interfacial boundary (e.g., sulci and gyri in the cortex, regions adjacent to the falx and tentorium) with strain differences exceeding 0.1. The mesh smoothing procedure in the voxel-based models marginally reduced the strain discrepancies compared to the surface-based model. This study yielded new quantitative insights into the general similarity in the strain responses between the surface- and voxel-based FE head models and underscored that caution should be exercised when using the strain at the interface to predict injury.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":"477 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface-Based vs. Voxel-Based Finite Element Head Models: Comparative Analyses of Strain Responses\",\"authors\":\"Zhou Zhou, Xiaogai Li, Svein Kleiven\",\"doi\":\"10.1101/2024.09.04.611159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finite element (FE) models of the human head are important injury assessment tools but developing a high-quality, hexahedral-meshed FE head model without compromising geometric accuracy is a challenging task. Important brain features, such as the cortical folds and ventricles, were captured only in a handful of FE head models that were primarily developed from two meshing techniques, i.e., surface-based meshing with conforming elements to capture the interfacial boundaries and voxel-based meshing by converting the segmented voxels into elements with and without meshing smoothing. Despite these advancements, little knowledge existed of how similar the strain responses were between surface- and voxel-based FE head models. To address this, a previously developed surface-based head model with conforming meshes to capture the cortical folds-subarachnoid cerebrospinal fluid and brain-ventricle interfaces was reused, and two voxel-based models with and without mesh smoothing were newly created here. These three models were employed to simulate head impacts. The results showed remarkable similarities in the strain responses between the surface- and the voxel-based models. When calculating commonly used injury metrics, including the percentile strains below the maximum (e.g., 95 percentile strain) and the volume of brain element with the strain over certain thresholds, the responses of the three models were virtually identical. When examining the strain distribution, the three models showed different patterns at the interfacial boundary (e.g., sulci and gyri in the cortex, regions adjacent to the falx and tentorium) with strain differences exceeding 0.1. The mesh smoothing procedure in the voxel-based models marginally reduced the strain discrepancies compared to the surface-based model. This study yielded new quantitative insights into the general similarity in the strain responses between the surface- and voxel-based FE head models and underscored that caution should be exercised when using the strain at the interface to predict injury.\",\"PeriodicalId\":501308,\"journal\":{\"name\":\"bioRxiv - Bioengineering\",\"volume\":\"477 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.04.611159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.04.611159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人体头部有限元(FE)模型是重要的损伤评估工具,但在不影响几何精度的前提下开发高质量的六面体网格 FE 头部模型是一项具有挑战性的任务。重要的大脑特征,如皮质褶皱和脑室,只能在少数几个头部有限元模型中捕捉到,这些模型主要由两种网格划分技术开发而成,即基于曲面的网格划分技术和基于体素的网格划分技术,前者使用保形元素捕捉界面边界,后者通过将分割的体素转换为元素并进行或不进行网格平滑处理。尽管取得了这些进步,但人们对基于曲面和基于体素的 FE 头部模型之间应变响应的相似性知之甚少。为了解决这个问题,我们重新使用了之前开发的基于表面的头部模型,该模型采用了符合网格来捕捉皮质褶皱-蛛网膜下腔脑脊液和脑-脑室界面。这三个模型用于模拟头部撞击。结果显示,表面模型和基于体素的模型的应变反应非常相似。在计算常用的损伤指标时,包括低于最大值的百分位应变(如 95 百分位应变)和应变超过特定阈值的脑元素体积,这三种模型的响应几乎完全相同。在研究应变分布时,三个模型在界面边界(如皮层的沟和回旋、邻近动眼神经和触角的区域)显示出不同的模式,应变差异超过 0.1。与基于表面的模型相比,基于体素的模型中的网格平滑程序略微减少了应变差异。这项研究对基于表面和基于体素的 FE 头部模型之间应变反应的普遍相似性提出了新的定量见解,并强调在使用界面应变预测损伤时应谨慎行事。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surface-Based vs. Voxel-Based Finite Element Head Models: Comparative Analyses of Strain Responses
Finite element (FE) models of the human head are important injury assessment tools but developing a high-quality, hexahedral-meshed FE head model without compromising geometric accuracy is a challenging task. Important brain features, such as the cortical folds and ventricles, were captured only in a handful of FE head models that were primarily developed from two meshing techniques, i.e., surface-based meshing with conforming elements to capture the interfacial boundaries and voxel-based meshing by converting the segmented voxels into elements with and without meshing smoothing. Despite these advancements, little knowledge existed of how similar the strain responses were between surface- and voxel-based FE head models. To address this, a previously developed surface-based head model with conforming meshes to capture the cortical folds-subarachnoid cerebrospinal fluid and brain-ventricle interfaces was reused, and two voxel-based models with and without mesh smoothing were newly created here. These three models were employed to simulate head impacts. The results showed remarkable similarities in the strain responses between the surface- and the voxel-based models. When calculating commonly used injury metrics, including the percentile strains below the maximum (e.g., 95 percentile strain) and the volume of brain element with the strain over certain thresholds, the responses of the three models were virtually identical. When examining the strain distribution, the three models showed different patterns at the interfacial boundary (e.g., sulci and gyri in the cortex, regions adjacent to the falx and tentorium) with strain differences exceeding 0.1. The mesh smoothing procedure in the voxel-based models marginally reduced the strain discrepancies compared to the surface-based model. This study yielded new quantitative insights into the general similarity in the strain responses between the surface- and voxel-based FE head models and underscored that caution should be exercised when using the strain at the interface to predict injury.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single unit electrophysiology recordings and computational modeling can predict octopus arm movement PiggyBac mediated transgenesis and CRISPR/Cas9 knockout in the greater waxmoth, Galleria mellonella A microinjection protocol for the greater waxworm moth, Galleria mellonella Engineered Receptors for Soluble Cell-to-Cell Communication Synthesis and mechanical characterization of polyacrylamide (PAAm) hydrogels with different stiffnesses for large-batch cell culture applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1