多变量高斯源与加性噪声互信息的次模性

George Crowley, Inaki Esnaola
{"title":"多变量高斯源与加性噪声互信息的次模性","authors":"George Crowley, Inaki Esnaola","doi":"arxiv-2409.03541","DOIUrl":null,"url":null,"abstract":"Sensor placement approaches in networks often involve using\ninformation-theoretic measures such as entropy and mutual information. We prove\nthat mutual information abides by submodularity and is non-decreasing when\nconsidering the mutual information between the states of the network and a\nsubset of $k$ nodes subjected to additive white Gaussian noise. We prove this\nunder the assumption that the states follow a non-degenerate multivariate\nGaussian distribution.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"297 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Submodularity of Mutual Information for Multivariate Gaussian Sources with Additive Noise\",\"authors\":\"George Crowley, Inaki Esnaola\",\"doi\":\"arxiv-2409.03541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensor placement approaches in networks often involve using\\ninformation-theoretic measures such as entropy and mutual information. We prove\\nthat mutual information abides by submodularity and is non-decreasing when\\nconsidering the mutual information between the states of the network and a\\nsubset of $k$ nodes subjected to additive white Gaussian noise. We prove this\\nunder the assumption that the states follow a non-degenerate multivariate\\nGaussian distribution.\",\"PeriodicalId\":501082,\"journal\":{\"name\":\"arXiv - MATH - Information Theory\",\"volume\":\"297 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络中的传感器安置方法通常涉及使用熵和互信息等信息论度量。我们证明,在考虑网络状态与受加性白高斯噪声影响的 $k$ 节点子集之间的互信息时,互信息遵守亚模态性,并且是非递减的。我们在假设状态遵循非退化多变量高斯分布的前提下证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Submodularity of Mutual Information for Multivariate Gaussian Sources with Additive Noise
Sensor placement approaches in networks often involve using information-theoretic measures such as entropy and mutual information. We prove that mutual information abides by submodularity and is non-decreasing when considering the mutual information between the states of the network and a subset of $k$ nodes subjected to additive white Gaussian noise. We prove this under the assumption that the states follow a non-degenerate multivariate Gaussian distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fluid Antenna-enabled Integrated Sensing, Communication, and Computing Systems On the second-order zero differential properties of several classes of power functions over finite fields Synchronizable hybrid subsystem codes Decoding Algorithm Correcting Single-Insertion Plus Single-Deletion for Non-binary Quantum Codes A Symbol-Pair Decoder for CSS Codes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1