Sara Khaleghi, Taher Azdast, Rezgar Hasanzadeh, Chul B. Park, Asghar Rasouli
{"title":"调整之前开发的微孔丙烯腈-丁二烯-苯乙烯/热塑性聚氨酯共混泡沫的蜂窝结构","authors":"Sara Khaleghi, Taher Azdast, Rezgar Hasanzadeh, Chul B. Park, Asghar Rasouli","doi":"10.1002/pen.26920","DOIUrl":null,"url":null,"abstract":"<jats:label/>This study investigates the cell structure control in 50% thermoplastic polyurethane (TPU) and 50% acrylonitrile butadiene styrene (ABS) blend foam using CO<jats:sub>2</jats:sub> as a physical blowing agent, focusing on the effects of variable foaming parameters on the microstructure. Samples measuring 25 × 25 × 1 mm were produced and analyzed for foam structure. The foaming process involved saturating the samples with CO<jats:sub>2</jats:sub> gas at pressures of 4, 5.5, and 7 MPa, followed by rapid pressure release and immersion in a hot glycerol bath. The foaming parameters included varied temperatures (80, 90, and 120°C) and times (5–80 s). Scanning electron microscope (SEM) analysis provided data on cell size and density. Results indicated that increasing the saturation pressure enhanced CO<jats:sub>2</jats:sub> uptake in the ABS/TPU blend, with the CO<jats:sub>2</jats:sub> uptake rate peaking early in the process. Higher foaming temperatures and extended foaming times led to increased cell size, cell density, and expansion ratio. These findings highlight the significant role of process parameters in controlling the cell structure of ABS/TPU blend foams, offering valuable insights into optimizing foam properties for industrial applications.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Optimization of foam parameters leads to cell structure control in ABS/TPU composite foams for industrial applications.</jats:list-item> <jats:list-item>Increasing saturation pressure significantly boosts CO<jats:sub>2</jats:sub> uptake in ABS/TPU composite foams.</jats:list-item> <jats:list-item>Increasing the foaming temperature and duration leads to larger cell sizes, higher cell density, and greater expansion ratios in ABS/TPU composite foams.</jats:list-item> </jats:list>","PeriodicalId":20281,"journal":{"name":"Polymer Engineering and Science","volume":"38 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning cellular structure in a previously developed microcellular acrylonitrile butadiene styrene/thermoplastic polyurethane blend foams\",\"authors\":\"Sara Khaleghi, Taher Azdast, Rezgar Hasanzadeh, Chul B. Park, Asghar Rasouli\",\"doi\":\"10.1002/pen.26920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:label/>This study investigates the cell structure control in 50% thermoplastic polyurethane (TPU) and 50% acrylonitrile butadiene styrene (ABS) blend foam using CO<jats:sub>2</jats:sub> as a physical blowing agent, focusing on the effects of variable foaming parameters on the microstructure. Samples measuring 25 × 25 × 1 mm were produced and analyzed for foam structure. The foaming process involved saturating the samples with CO<jats:sub>2</jats:sub> gas at pressures of 4, 5.5, and 7 MPa, followed by rapid pressure release and immersion in a hot glycerol bath. The foaming parameters included varied temperatures (80, 90, and 120°C) and times (5–80 s). Scanning electron microscope (SEM) analysis provided data on cell size and density. Results indicated that increasing the saturation pressure enhanced CO<jats:sub>2</jats:sub> uptake in the ABS/TPU blend, with the CO<jats:sub>2</jats:sub> uptake rate peaking early in the process. Higher foaming temperatures and extended foaming times led to increased cell size, cell density, and expansion ratio. These findings highlight the significant role of process parameters in controlling the cell structure of ABS/TPU blend foams, offering valuable insights into optimizing foam properties for industrial applications.Highlights<jats:list list-type=\\\"bullet\\\"> <jats:list-item>Optimization of foam parameters leads to cell structure control in ABS/TPU composite foams for industrial applications.</jats:list-item> <jats:list-item>Increasing saturation pressure significantly boosts CO<jats:sub>2</jats:sub> uptake in ABS/TPU composite foams.</jats:list-item> <jats:list-item>Increasing the foaming temperature and duration leads to larger cell sizes, higher cell density, and greater expansion ratios in ABS/TPU composite foams.</jats:list-item> </jats:list>\",\"PeriodicalId\":20281,\"journal\":{\"name\":\"Polymer Engineering and Science\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Engineering and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pen.26920\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pen.26920","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Tuning cellular structure in a previously developed microcellular acrylonitrile butadiene styrene/thermoplastic polyurethane blend foams
This study investigates the cell structure control in 50% thermoplastic polyurethane (TPU) and 50% acrylonitrile butadiene styrene (ABS) blend foam using CO2 as a physical blowing agent, focusing on the effects of variable foaming parameters on the microstructure. Samples measuring 25 × 25 × 1 mm were produced and analyzed for foam structure. The foaming process involved saturating the samples with CO2 gas at pressures of 4, 5.5, and 7 MPa, followed by rapid pressure release and immersion in a hot glycerol bath. The foaming parameters included varied temperatures (80, 90, and 120°C) and times (5–80 s). Scanning electron microscope (SEM) analysis provided data on cell size and density. Results indicated that increasing the saturation pressure enhanced CO2 uptake in the ABS/TPU blend, with the CO2 uptake rate peaking early in the process. Higher foaming temperatures and extended foaming times led to increased cell size, cell density, and expansion ratio. These findings highlight the significant role of process parameters in controlling the cell structure of ABS/TPU blend foams, offering valuable insights into optimizing foam properties for industrial applications.HighlightsOptimization of foam parameters leads to cell structure control in ABS/TPU composite foams for industrial applications.Increasing saturation pressure significantly boosts CO2 uptake in ABS/TPU composite foams.Increasing the foaming temperature and duration leads to larger cell sizes, higher cell density, and greater expansion ratios in ABS/TPU composite foams.
期刊介绍:
For more than 30 years, Polymer Engineering & Science has been one of the most highly regarded journals in the field, serving as a forum for authors of treatises on the cutting edge of polymer science and technology. The importance of PE&S is underscored by the frequent rate at which its articles are cited, especially by other publications - literally thousand of times a year. Engineers, researchers, technicians, and academicians worldwide are looking to PE&S for the valuable information they need. There are special issues compiled by distinguished guest editors. These contain proceedings of symposia on such diverse topics as polyblends, mechanics of plastics and polymer welding.