Amirhossein Jalali Kandeloos, Saeed Bastani, Mehdi Ghahari, Mojtaba Jalili, Jacques Lalevée
{"title":"近红外诱导的上转换辅助光聚合:关键因素、挑战和未来方向","authors":"Amirhossein Jalali Kandeloos, Saeed Bastani, Mehdi Ghahari, Mojtaba Jalili, Jacques Lalevée","doi":"10.1002/pen.26908","DOIUrl":null,"url":null,"abstract":"<jats:label/>NIR‐induced upconversion‐assisted photopolymerization has gained growing attention in the past two decades because of its numerous advantages over conventional UV/visible photopolymerization and two‐photon polymerization processes. However, research in this area is still in its early stages. To extend the practical application of NIR‐induced radiation curing, it is essential to optimize the factors affecting the photopolymerization reactions. Researchers have been constantly trying to improve these factors to tune the photo‐physical characteristics (luminescence intensity and color) of upconversion particles (UCPs), enhance curing depths and degree of double bond conversion (DC), and investigate the application of UCPs in emerging fields. In this review, first, a brief discussion of the upconversion mechanisms and upconversion efficiency is provided. Then, a detailed discussion of the factors influencing the upconversion‐assisted photopolymerization comprising UCP nature and characteristics, UCP content, presence of fillers/pigments/additives, laser intensity, photoinitiator content, and maximum absorption wavelength of photoinitiator is provided, and recent progress in improving these factors is presented. Finally, the advantages and drawbacks of the UC‐initiated polymerization are discussed, and perspectives for future directions are suggested.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>NIR‐induced upconversion‐assisted photopolymerization garners growing interest.</jats:list-item> <jats:list-item>Influential factors in upconversion‐assisted photopolymerization are thoroughly discussed.</jats:list-item> <jats:list-item>The recent progress on improving these factors and the future directions are provided.</jats:list-item> </jats:list>","PeriodicalId":20281,"journal":{"name":"Polymer Engineering and Science","volume":"79 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NIR‐induced upconversion‐assisted photopolymerization: Key factors, challenges, and future directions\",\"authors\":\"Amirhossein Jalali Kandeloos, Saeed Bastani, Mehdi Ghahari, Mojtaba Jalili, Jacques Lalevée\",\"doi\":\"10.1002/pen.26908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:label/>NIR‐induced upconversion‐assisted photopolymerization has gained growing attention in the past two decades because of its numerous advantages over conventional UV/visible photopolymerization and two‐photon polymerization processes. However, research in this area is still in its early stages. To extend the practical application of NIR‐induced radiation curing, it is essential to optimize the factors affecting the photopolymerization reactions. Researchers have been constantly trying to improve these factors to tune the photo‐physical characteristics (luminescence intensity and color) of upconversion particles (UCPs), enhance curing depths and degree of double bond conversion (DC), and investigate the application of UCPs in emerging fields. In this review, first, a brief discussion of the upconversion mechanisms and upconversion efficiency is provided. Then, a detailed discussion of the factors influencing the upconversion‐assisted photopolymerization comprising UCP nature and characteristics, UCP content, presence of fillers/pigments/additives, laser intensity, photoinitiator content, and maximum absorption wavelength of photoinitiator is provided, and recent progress in improving these factors is presented. Finally, the advantages and drawbacks of the UC‐initiated polymerization are discussed, and perspectives for future directions are suggested.Highlights<jats:list list-type=\\\"bullet\\\"> <jats:list-item>NIR‐induced upconversion‐assisted photopolymerization garners growing interest.</jats:list-item> <jats:list-item>Influential factors in upconversion‐assisted photopolymerization are thoroughly discussed.</jats:list-item> <jats:list-item>The recent progress on improving these factors and the future directions are provided.</jats:list-item> </jats:list>\",\"PeriodicalId\":20281,\"journal\":{\"name\":\"Polymer Engineering and Science\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Engineering and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pen.26908\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pen.26908","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
NIR‐induced upconversion‐assisted photopolymerization: Key factors, challenges, and future directions
NIR‐induced upconversion‐assisted photopolymerization has gained growing attention in the past two decades because of its numerous advantages over conventional UV/visible photopolymerization and two‐photon polymerization processes. However, research in this area is still in its early stages. To extend the practical application of NIR‐induced radiation curing, it is essential to optimize the factors affecting the photopolymerization reactions. Researchers have been constantly trying to improve these factors to tune the photo‐physical characteristics (luminescence intensity and color) of upconversion particles (UCPs), enhance curing depths and degree of double bond conversion (DC), and investigate the application of UCPs in emerging fields. In this review, first, a brief discussion of the upconversion mechanisms and upconversion efficiency is provided. Then, a detailed discussion of the factors influencing the upconversion‐assisted photopolymerization comprising UCP nature and characteristics, UCP content, presence of fillers/pigments/additives, laser intensity, photoinitiator content, and maximum absorption wavelength of photoinitiator is provided, and recent progress in improving these factors is presented. Finally, the advantages and drawbacks of the UC‐initiated polymerization are discussed, and perspectives for future directions are suggested.HighlightsNIR‐induced upconversion‐assisted photopolymerization garners growing interest.Influential factors in upconversion‐assisted photopolymerization are thoroughly discussed.The recent progress on improving these factors and the future directions are provided.
期刊介绍:
For more than 30 years, Polymer Engineering & Science has been one of the most highly regarded journals in the field, serving as a forum for authors of treatises on the cutting edge of polymer science and technology. The importance of PE&S is underscored by the frequent rate at which its articles are cited, especially by other publications - literally thousand of times a year. Engineers, researchers, technicians, and academicians worldwide are looking to PE&S for the valuable information they need. There are special issues compiled by distinguished guest editors. These contain proceedings of symposia on such diverse topics as polyblends, mechanics of plastics and polymer welding.