低分子量聚乙二醇改性白炭黑在天然橡胶复合材料中的应用

IF 3.2 4区 工程技术 Q2 ENGINEERING, CHEMICAL Polymer Engineering and Science Pub Date : 2024-08-28 DOI:10.1002/pen.26909
Biao Li, Yao Xiao, Yinggang Huang, Zheng Gong, Yahui Chen, Shaoming Li, Chuansheng Wang, Huiguang Bian
{"title":"低分子量聚乙二醇改性白炭黑在天然橡胶复合材料中的应用","authors":"Biao Li, Yao Xiao, Yinggang Huang, Zheng Gong, Yahui Chen, Shaoming Li, Chuansheng Wang, Huiguang Bian","doi":"10.1002/pen.26909","DOIUrl":null,"url":null,"abstract":"<jats:label/>Silica serves as the primary filler in the fabrication of eco‐friendly tires, and achieving an optimal dispersion of polar silica within the natural rubber matrix is crucial for crafting high‐performance rubber composites. In this study, biodegradable surfactants polyethylene glycol (PEG) with molecular weights of 200, 400, and 800 were employed to modify silica. The modified silica was characterized by Fourier‐transform infrared spectroscopy; PEG‐modified silica with different molecular weights was compounded with Si69, a conventional silane coupling agent, in the formulation. This aimed to reduce Si69 dosage and mitigate the emission of volatile organic gases, such as ethanol, generated during the silanization reaction between Si69 and silica. Experimental findings revealed that compared with natural rubber composites containing six parts of Si69, the addition of PEG‐modified silica enhanced filler dispersion in the composite while reducing Si69 dosage by three parts. This led to accelerated vulcanization rates, effectively decreased energy consumption during production, and significantly improved wet slip resistance, while maintaining optimal rolling resistance. Rubber composites prepared with PEG800‐modified silica exhibited a 10% increase in elongation at break, a 12% increase in tensile product coefficient, and a 19% enhancement in wet slip resistance.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Silica is modified by polyethylene glycol with molecular weight of 200, 400, and 800.</jats:list-item> <jats:list-item>The amount of silane coupling agent and VOC emissions are reduced.</jats:list-item> <jats:list-item>The interfacial bonding between silica and rubber matrix is enhanced.</jats:list-item> <jats:list-item>The tensile product coefficient and wet slip resistance are improved by 12% and 19%.</jats:list-item> </jats:list>","PeriodicalId":20281,"journal":{"name":"Polymer Engineering and Science","volume":"38 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of low‐molecular‐weight polyethylene glycol‐modified silica in natural rubber composites\",\"authors\":\"Biao Li, Yao Xiao, Yinggang Huang, Zheng Gong, Yahui Chen, Shaoming Li, Chuansheng Wang, Huiguang Bian\",\"doi\":\"10.1002/pen.26909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:label/>Silica serves as the primary filler in the fabrication of eco‐friendly tires, and achieving an optimal dispersion of polar silica within the natural rubber matrix is crucial for crafting high‐performance rubber composites. In this study, biodegradable surfactants polyethylene glycol (PEG) with molecular weights of 200, 400, and 800 were employed to modify silica. The modified silica was characterized by Fourier‐transform infrared spectroscopy; PEG‐modified silica with different molecular weights was compounded with Si69, a conventional silane coupling agent, in the formulation. This aimed to reduce Si69 dosage and mitigate the emission of volatile organic gases, such as ethanol, generated during the silanization reaction between Si69 and silica. Experimental findings revealed that compared with natural rubber composites containing six parts of Si69, the addition of PEG‐modified silica enhanced filler dispersion in the composite while reducing Si69 dosage by three parts. This led to accelerated vulcanization rates, effectively decreased energy consumption during production, and significantly improved wet slip resistance, while maintaining optimal rolling resistance. Rubber composites prepared with PEG800‐modified silica exhibited a 10% increase in elongation at break, a 12% increase in tensile product coefficient, and a 19% enhancement in wet slip resistance.Highlights<jats:list list-type=\\\"bullet\\\"> <jats:list-item>Silica is modified by polyethylene glycol with molecular weight of 200, 400, and 800.</jats:list-item> <jats:list-item>The amount of silane coupling agent and VOC emissions are reduced.</jats:list-item> <jats:list-item>The interfacial bonding between silica and rubber matrix is enhanced.</jats:list-item> <jats:list-item>The tensile product coefficient and wet slip resistance are improved by 12% and 19%.</jats:list-item> </jats:list>\",\"PeriodicalId\":20281,\"journal\":{\"name\":\"Polymer Engineering and Science\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Engineering and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pen.26909\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pen.26909","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

白炭黑是制造环保轮胎的主要填料,在天然橡胶基体中实现极性白炭黑的最佳分散是制造高性能橡胶复合材料的关键。本研究采用分子量分别为 200、400 和 800 的生物可降解表面活性剂聚乙二醇(PEG)对白炭黑进行改性。通过傅立叶变换红外光谱对改性白炭黑进行了表征;在配方中将不同分子量的 PEG 改性白炭黑与传统硅烷偶联剂 Si69 复合。这样做的目的是减少 Si69 的用量,并减少 Si69 与二氧化硅发生硅烷化反应时产生的乙醇等挥发性有机气体的排放。实验结果表明,与含有六份 Si69 的天然橡胶复合材料相比,添加 PEG 改性白炭黑可提高填料在复合材料中的分散性,同时将 Si69 的用量减少三份。这加快了硫化速度,有效降低了生产过程中的能耗,并显著提高了湿滑阻力,同时保持了最佳的滚动阻力。使用 PEG800 改性白炭黑制备的橡胶复合材料的断裂伸长率提高了 10%,拉伸产品系数提高了 12%,抗湿滑性能提高了 19%。硅烷偶联剂的用量和挥发性有机化合物的排放量均有所减少。增强了白炭黑与橡胶基质之间的界面结合。拉伸产品系数和湿滑阻力分别提高了 12% 和 19%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of low‐molecular‐weight polyethylene glycol‐modified silica in natural rubber composites
Silica serves as the primary filler in the fabrication of eco‐friendly tires, and achieving an optimal dispersion of polar silica within the natural rubber matrix is crucial for crafting high‐performance rubber composites. In this study, biodegradable surfactants polyethylene glycol (PEG) with molecular weights of 200, 400, and 800 were employed to modify silica. The modified silica was characterized by Fourier‐transform infrared spectroscopy; PEG‐modified silica with different molecular weights was compounded with Si69, a conventional silane coupling agent, in the formulation. This aimed to reduce Si69 dosage and mitigate the emission of volatile organic gases, such as ethanol, generated during the silanization reaction between Si69 and silica. Experimental findings revealed that compared with natural rubber composites containing six parts of Si69, the addition of PEG‐modified silica enhanced filler dispersion in the composite while reducing Si69 dosage by three parts. This led to accelerated vulcanization rates, effectively decreased energy consumption during production, and significantly improved wet slip resistance, while maintaining optimal rolling resistance. Rubber composites prepared with PEG800‐modified silica exhibited a 10% increase in elongation at break, a 12% increase in tensile product coefficient, and a 19% enhancement in wet slip resistance.Highlights Silica is modified by polyethylene glycol with molecular weight of 200, 400, and 800. The amount of silane coupling agent and VOC emissions are reduced. The interfacial bonding between silica and rubber matrix is enhanced. The tensile product coefficient and wet slip resistance are improved by 12% and 19%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Engineering and Science
Polymer Engineering and Science 工程技术-高分子科学
CiteScore
5.40
自引率
18.80%
发文量
329
审稿时长
3.7 months
期刊介绍: For more than 30 years, Polymer Engineering & Science has been one of the most highly regarded journals in the field, serving as a forum for authors of treatises on the cutting edge of polymer science and technology. The importance of PE&S is underscored by the frequent rate at which its articles are cited, especially by other publications - literally thousand of times a year. Engineers, researchers, technicians, and academicians worldwide are looking to PE&S for the valuable information they need. There are special issues compiled by distinguished guest editors. These contain proceedings of symposia on such diverse topics as polyblends, mechanics of plastics and polymer welding.
期刊最新文献
Epoxy composite dust reinforced novel polypropylene composites: An eco‐friendly approach toward sustainable resource management Nanosilica reinforced epoxy under super high strain rate loading Study on mechanical properties of a roadbed rehabilitation polyurethane grouting material after freeze–thaw cycles Synchronously enhanced thermal conductivity and dielectric properties of silicone rubber composites filled with the AlN‐PPy‐KH570 multilayer core‐shell hybrid structure PLA/CB and HDPE/CB conductive polymer composites: Effect of polymer matrix structure on the rheological and electrical percolation threshold
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1