{"title":"PopMLvis:利用全基因组关联研究的基因型数据进行群体结构分析和可视化的工具","authors":"Mohamed Elshrif, Keivin Isufaj, Khalid Kunji, Mohamad Saad","doi":"10.1186/s12859-024-05908-1","DOIUrl":null,"url":null,"abstract":"One of the aims of population genetics is to identify genetic differences/similarities among individuals of multiple ancestries. Many approaches including principal component analysis, clustering, and maximum likelihood techniques can be used to assign individuals to a given ancestry based on their genetic makeup. Although there are several tools that implement such algorithms, there is a lack of interactive visual platforms to run a variety of algorithms in one place. Therefore, we developed PopMLvis, a platform that offers an interactive environment to visualize genetic similarity data using several algorithms, and generate figures that can be easily integrated into scientific articles.","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PopMLvis: a tool for analysis and visualization of population structure using genotype data from genome-wide association studies\",\"authors\":\"Mohamed Elshrif, Keivin Isufaj, Khalid Kunji, Mohamad Saad\",\"doi\":\"10.1186/s12859-024-05908-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the aims of population genetics is to identify genetic differences/similarities among individuals of multiple ancestries. Many approaches including principal component analysis, clustering, and maximum likelihood techniques can be used to assign individuals to a given ancestry based on their genetic makeup. Although there are several tools that implement such algorithms, there is a lack of interactive visual platforms to run a variety of algorithms in one place. Therefore, we developed PopMLvis, a platform that offers an interactive environment to visualize genetic similarity data using several algorithms, and generate figures that can be easily integrated into scientific articles.\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-024-05908-1\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05908-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
PopMLvis: a tool for analysis and visualization of population structure using genotype data from genome-wide association studies
One of the aims of population genetics is to identify genetic differences/similarities among individuals of multiple ancestries. Many approaches including principal component analysis, clustering, and maximum likelihood techniques can be used to assign individuals to a given ancestry based on their genetic makeup. Although there are several tools that implement such algorithms, there is a lack of interactive visual platforms to run a variety of algorithms in one place. Therefore, we developed PopMLvis, a platform that offers an interactive environment to visualize genetic similarity data using several algorithms, and generate figures that can be easily integrated into scientific articles.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.