基于有限分析的先进九点方案在二维数值储层模拟中的应用

IF 2.5 4区 工程技术 Q2 ENGINEERING, MECHANICAL Journal of Porous Media Pub Date : 2024-08-01 DOI:10.1615/jpormedia.2024049723
Jun Hu, Ya-Juan Dong, Zhi-Feng Liu, Jin-Biao Yu, Xiao-Hong Wang, Yong Wang
{"title":"基于有限分析的先进九点方案在二维数值储层模拟中的应用","authors":"Jun Hu, Ya-Juan Dong, Zhi-Feng Liu, Jin-Biao Yu, Xiao-Hong Wang, Yong Wang","doi":"10.1615/jpormedia.2024049723","DOIUrl":null,"url":null,"abstract":"This article proposes an advanced nine-point (9P) scheme for solving multiphase flow in heterogeneous porous media, which is an extension of the 5P scheme constructed by the finite analytical method (FAM). As media heterogeneity increases, the error of traditional algorithms become uncontrollable due to their significant underestimation of nodal transmissibility. However, the transmissibility calculated in FAM is based on a local analytical solution and its accuracy is not dependent on the strength of heterogeneity. The proposed FAM-9P scheme offers two distinct advantages. Compared to the traditional 9P scheme, it provides much more accurate simulation results, especially for strongly heterogeneous porous media. Additionally, compared to the FAM-5P scheme, it can alleviate grid orientation effect (GOE) under adverse mobility ratios.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Advanced Nine-Point Scheme based on Finite Analysis in Two-Dimensional Numerical Reservoir Simulation\",\"authors\":\"Jun Hu, Ya-Juan Dong, Zhi-Feng Liu, Jin-Biao Yu, Xiao-Hong Wang, Yong Wang\",\"doi\":\"10.1615/jpormedia.2024049723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes an advanced nine-point (9P) scheme for solving multiphase flow in heterogeneous porous media, which is an extension of the 5P scheme constructed by the finite analytical method (FAM). As media heterogeneity increases, the error of traditional algorithms become uncontrollable due to their significant underestimation of nodal transmissibility. However, the transmissibility calculated in FAM is based on a local analytical solution and its accuracy is not dependent on the strength of heterogeneity. The proposed FAM-9P scheme offers two distinct advantages. Compared to the traditional 9P scheme, it provides much more accurate simulation results, especially for strongly heterogeneous porous media. Additionally, compared to the FAM-5P scheme, it can alleviate grid orientation effect (GOE) under adverse mobility ratios.\",\"PeriodicalId\":50082,\"journal\":{\"name\":\"Journal of Porous Media\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/jpormedia.2024049723\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Media","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/jpormedia.2024049723","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于求解异质多孔介质中多相流的先进九点(9P)方案,它是对有限解析法(FAM)构建的 5P 方案的扩展。随着介质异质性的增加,传统算法由于严重低估了节点透射率,其误差变得难以控制。然而,FAM 中计算的透射率是基于局部解析解的,其精度与异质性的强度无关。拟议的 FAM-9P 方案具有两个明显的优势。与传统的 9P 方案相比,它能提供更精确的模拟结果,特别是对于强异质多孔介质。此外,与 FAM-5P 方案相比,它可以减轻不利流动比率下的网格定向效应 (GOE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Advanced Nine-Point Scheme based on Finite Analysis in Two-Dimensional Numerical Reservoir Simulation
This article proposes an advanced nine-point (9P) scheme for solving multiphase flow in heterogeneous porous media, which is an extension of the 5P scheme constructed by the finite analytical method (FAM). As media heterogeneity increases, the error of traditional algorithms become uncontrollable due to their significant underestimation of nodal transmissibility. However, the transmissibility calculated in FAM is based on a local analytical solution and its accuracy is not dependent on the strength of heterogeneity. The proposed FAM-9P scheme offers two distinct advantages. Compared to the traditional 9P scheme, it provides much more accurate simulation results, especially for strongly heterogeneous porous media. Additionally, compared to the FAM-5P scheme, it can alleviate grid orientation effect (GOE) under adverse mobility ratios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Porous Media
Journal of Porous Media 工程技术-工程:机械
CiteScore
3.50
自引率
8.70%
发文量
89
审稿时长
12.5 months
期刊介绍: The Journal of Porous Media publishes original full-length research articles (and technical notes) in a wide variety of areas related to porous media studies, such as mathematical modeling, numerical and experimental techniques, industrial and environmental heat and mass transfer, conduction, convection, radiation, particle transport and capillary effects, reactive flows, deformable porous media, biomedical applications, and mechanics of the porous substrate. Emphasis will be given to manuscripts that present novel findings pertinent to these areas. The journal will also consider publication of state-of-the-art reviews. Manuscripts applying known methods to previously solved problems or providing results in the absence of scientific motivation or application will not be accepted. Submitted articles should contribute to the understanding of specific scientific problems or to solution techniques that are useful in applications. Papers that link theory with computational practice to provide insight into the processes are welcome.
期刊最新文献
Multi‑scale Experimental Investigations on the Deterioration Mechanism of Sandstone after high-temperature treatment Geometric models for incorporating solid accumulation at the nodes of open-cell foams CONVECTIVE FLOW AND HEAT TRANSPORT OF CLAY NANOFLUID ACROSS A VERTICAL SURFACE IN A DARCY-BRINKMAN POROUS MEDIUM Heat Transfer Enhancement of Modified Sodium Acetate Trihydrate Composite Phase Change Material with Metal Foams An Advanced Nine-Point Scheme based on Finite Analysis in Two-Dimensional Numerical Reservoir Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1