一步制备具有梯度润湿性的改性光热驱动三聚氰胺泡沫,用于油水分离

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Frontiers of Materials Science Pub Date : 2024-08-21 DOI:10.1007/s11706-024-0690-z
Mengdan Jia, Mei-Chen Lin, Hai-Tao Ren, Bing-Chiuan Shiu, Ching-Wen Lou, Zhi-Ke Wang, Li-Yan Liu, Ting-Ting Li
{"title":"一步制备具有梯度润湿性的改性光热驱动三聚氰胺泡沫,用于油水分离","authors":"Mengdan Jia,&nbsp;Mei-Chen Lin,&nbsp;Hai-Tao Ren,&nbsp;Bing-Chiuan Shiu,&nbsp;Ching-Wen Lou,&nbsp;Zhi-Ke Wang,&nbsp;Li-Yan Liu,&nbsp;Ting-Ting Li","doi":"10.1007/s11706-024-0690-z","DOIUrl":null,"url":null,"abstract":"<div><p>The absorption of high-viscosity oil by traditional oil absorbing materials has always been a challenge. So there is an urgent need to solve the problem of slow absorption of high-viscosity oil. In this work, an emulsion composed of polydimethylsiloxane (PDMS), carbon black (CB) and waterborne polyurethane (solid content 40%) was sprayed on the melamine foam (MF). After volatilization of organic solvents, the photothermal material CB was fixed on the MF framework, making it photothermal. By raising the temperature of the modified foam to accelerate the internal thermal movement of high-viscosity oil molecules around the foam, intermolecular forces are reduced, thereby accelerating the separation process. The absorption capacity of this modified MF towards organic solvents and oil is up to 79 times its own weight. In addition, the mechanical properties of the modified foam are improved to a certain extent, more conducive to the continuous oil–water separation. This photothermal absorption material provides ideas for the rapid removal of high-viscosity oil, heavy oil, etc.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-step preparation of modified photothermal-driven melamine foam with gradient wettability for oil–water separation\",\"authors\":\"Mengdan Jia,&nbsp;Mei-Chen Lin,&nbsp;Hai-Tao Ren,&nbsp;Bing-Chiuan Shiu,&nbsp;Ching-Wen Lou,&nbsp;Zhi-Ke Wang,&nbsp;Li-Yan Liu,&nbsp;Ting-Ting Li\",\"doi\":\"10.1007/s11706-024-0690-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The absorption of high-viscosity oil by traditional oil absorbing materials has always been a challenge. So there is an urgent need to solve the problem of slow absorption of high-viscosity oil. In this work, an emulsion composed of polydimethylsiloxane (PDMS), carbon black (CB) and waterborne polyurethane (solid content 40%) was sprayed on the melamine foam (MF). After volatilization of organic solvents, the photothermal material CB was fixed on the MF framework, making it photothermal. By raising the temperature of the modified foam to accelerate the internal thermal movement of high-viscosity oil molecules around the foam, intermolecular forces are reduced, thereby accelerating the separation process. The absorption capacity of this modified MF towards organic solvents and oil is up to 79 times its own weight. In addition, the mechanical properties of the modified foam are improved to a certain extent, more conducive to the continuous oil–water separation. This photothermal absorption material provides ideas for the rapid removal of high-viscosity oil, heavy oil, etc.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":\"18 3\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-024-0690-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-024-0690-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统吸油材料对高粘度油的吸收一直是个难题。因此,解决高粘度油吸收缓慢的问题迫在眉睫。本研究将聚二甲基硅氧烷(PDMS)、炭黑(CB)和水性聚氨酯(固含量为 40%)组成的乳液喷涂在三聚氰胺泡沫(MF)上。有机溶剂挥发后,光热材料 CB 被固定在三聚氰胺泡沫框架上,使其产生光热。通过提高改性泡沫的温度来加速泡沫周围高粘度油分子的内部热运动,从而降低分子间的作用力,加快分离过程。这种改性 MF 对有机溶剂和油类的吸收能力是其自身重量的 79 倍。此外,改性泡沫的机械性能也得到了一定程度的改善,更有利于油水的连续分离。这种光热吸收材料为快速去除高粘度油、重油等提供了思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
One-step preparation of modified photothermal-driven melamine foam with gradient wettability for oil–water separation

The absorption of high-viscosity oil by traditional oil absorbing materials has always been a challenge. So there is an urgent need to solve the problem of slow absorption of high-viscosity oil. In this work, an emulsion composed of polydimethylsiloxane (PDMS), carbon black (CB) and waterborne polyurethane (solid content 40%) was sprayed on the melamine foam (MF). After volatilization of organic solvents, the photothermal material CB was fixed on the MF framework, making it photothermal. By raising the temperature of the modified foam to accelerate the internal thermal movement of high-viscosity oil molecules around the foam, intermolecular forces are reduced, thereby accelerating the separation process. The absorption capacity of this modified MF towards organic solvents and oil is up to 79 times its own weight. In addition, the mechanical properties of the modified foam are improved to a certain extent, more conducive to the continuous oil–water separation. This photothermal absorption material provides ideas for the rapid removal of high-viscosity oil, heavy oil, etc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Materials Science
Frontiers of Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.20
自引率
3.70%
发文量
515
期刊介绍: Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community. The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to): Biomaterials including biomimetics and biomineralization; Nano materials; Polymers and composites; New metallic materials; Advanced ceramics; Materials modeling and computation; Frontier materials synthesis and characterization; Novel methods for materials manufacturing; Materials performance; Materials applications in energy, information and biotechnology.
期刊最新文献
Revealing effects of powder reuse for LPBF-fabricated NiTi shape memory alloys Construction of a novel fluorescent nanoenzyme based on lanthanides for tumor theranostics In vitro evaluation of Zn–10Mg–xHA composites with the core–shell structure Femtosecond laser-induced graphene for temperature and ultrasensitive flexible strain sensing Adsorption and photocatalytic degradation performances of methyl orange-imprinted polysiloxane particles using TiO2 as matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1