{"title":"铁中毒中的甾醇:从分子机制到治疗策略","authors":"Yaxu Li, Zan Li, Qiao Ran, Ping Wang","doi":"10.1016/j.molmed.2024.08.007","DOIUrl":null,"url":null,"abstract":"<p>Ferroptosis, a novel cell death mode driven by iron-dependent phospholipid (PL) peroxidation, has emerged as a promising therapeutic strategy for the treatments of cancer, cardiovascular diseases, and ischemic-reperfusion injury (IRI). PL peroxidation, the key process of ferroptosis, requires polyunsaturated fatty acid (PUFA)-containing PLs (PL-PUFAs) as substrates, undergoing a chain reaction with iron and oxygen. Cells prevent ferroptosis by maintaining a homeostatic equilibrium among substrates, processes, and detoxification of PL peroxidation. Sterols, lipids abundant in cell membranes, directly participate in PL peroxidation and influence ferroptosis sensitivity. Sterol metabolism also plays a key role in ferroptosis, and targeting sterols presents significant potential for treating numerous ferroptosis-associated disorders. This review elucidates the fundamental mechanisms of ferroptosis, emphasizing how sterols modulate this process and their therapeutic potential.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":"10 1","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sterols in ferroptosis: from molecular mechanisms to therapeutic strategies\",\"authors\":\"Yaxu Li, Zan Li, Qiao Ran, Ping Wang\",\"doi\":\"10.1016/j.molmed.2024.08.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ferroptosis, a novel cell death mode driven by iron-dependent phospholipid (PL) peroxidation, has emerged as a promising therapeutic strategy for the treatments of cancer, cardiovascular diseases, and ischemic-reperfusion injury (IRI). PL peroxidation, the key process of ferroptosis, requires polyunsaturated fatty acid (PUFA)-containing PLs (PL-PUFAs) as substrates, undergoing a chain reaction with iron and oxygen. Cells prevent ferroptosis by maintaining a homeostatic equilibrium among substrates, processes, and detoxification of PL peroxidation. Sterols, lipids abundant in cell membranes, directly participate in PL peroxidation and influence ferroptosis sensitivity. Sterol metabolism also plays a key role in ferroptosis, and targeting sterols presents significant potential for treating numerous ferroptosis-associated disorders. This review elucidates the fundamental mechanisms of ferroptosis, emphasizing how sterols modulate this process and their therapeutic potential.</p>\",\"PeriodicalId\":23263,\"journal\":{\"name\":\"Trends in molecular medicine\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molmed.2024.08.007\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molmed.2024.08.007","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Sterols in ferroptosis: from molecular mechanisms to therapeutic strategies
Ferroptosis, a novel cell death mode driven by iron-dependent phospholipid (PL) peroxidation, has emerged as a promising therapeutic strategy for the treatments of cancer, cardiovascular diseases, and ischemic-reperfusion injury (IRI). PL peroxidation, the key process of ferroptosis, requires polyunsaturated fatty acid (PUFA)-containing PLs (PL-PUFAs) as substrates, undergoing a chain reaction with iron and oxygen. Cells prevent ferroptosis by maintaining a homeostatic equilibrium among substrates, processes, and detoxification of PL peroxidation. Sterols, lipids abundant in cell membranes, directly participate in PL peroxidation and influence ferroptosis sensitivity. Sterol metabolism also plays a key role in ferroptosis, and targeting sterols presents significant potential for treating numerous ferroptosis-associated disorders. This review elucidates the fundamental mechanisms of ferroptosis, emphasizing how sterols modulate this process and their therapeutic potential.
期刊介绍:
Trends in Molecular Medicine (TMM) aims to offer concise and contextualized perspectives on the latest research advancing biomedical science toward better diagnosis, treatment, and prevention of human diseases. It focuses on research at the intersection of basic biology and clinical research, covering new concepts in human biology and pathology with clear implications for diagnostics and therapy. TMM reviews bridge the gap between bench and bedside, discussing research from preclinical studies to patient-enrolled trials. The major themes include disease mechanisms, tools and technologies, diagnostics, and therapeutics, with a preference for articles relevant to multiple themes. TMM serves as a platform for discussion, pushing traditional boundaries and fostering collaboration between scientists and clinicians. The journal seeks to publish provocative and authoritative articles that are also accessible to a broad audience, inspiring new directions in molecular medicine to enhance human health.