{"title":"采用多级交错调谐方法的新型石墨烯工艺低噪声放大器在 D 波段上的性能分析","authors":"Porika Nandini, Deepak Naik Jatoth, Pradeep Gorre, Manishankar Prasad Gupta, Sandeep Kumar, AlaaDdin Al-Shidaifat, Hanjung Song","doi":"10.1007/s10762-024-01009-5","DOIUrl":null,"url":null,"abstract":"<p>This work reports an ultra-low noise, multi-stage stagger-tuned low-noise amplifier (MS-ST-LNA) over the D-band performance and achieves a best trade-off between noise, bandwidth, and gain parameters. The ultra-low-noise is achieved in three ways: First, the high-gain 3-stage stagger tuned amplifier (STA) realizes a 3X gain compared to the conventional single-stage amplifier, which sets a low floor noise. Second, the stagger-tuned amplifier achieves 1.6 times lower noise than the traditional single-stage amplifier. Finally, the stagger tune realizes a high-order transfer function, which mitigates the high-frequency noise. The full LNA is implemented and fabricated using a commercial nano-manufacturing 9-nm graphene film FET on a silicon wafer using a 0.065-μm commercial process, occupying an area of 0.21 mm<sup>2</sup>. The proposed design achieves an optimum performance: a maximum measured gain of 20.5 dB and a minimum noise figure (NF) of 4.2 dB over 123.7 to 162.5 GHz. The proposed LNA consumes ultra-low power consumption of 21.3 mW under the power supply of 1.2 V.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"68 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of Novel Graphene Process Low-Noise Amplifier with Multi-stage Stagger-Tuned Approach over D-band\",\"authors\":\"Porika Nandini, Deepak Naik Jatoth, Pradeep Gorre, Manishankar Prasad Gupta, Sandeep Kumar, AlaaDdin Al-Shidaifat, Hanjung Song\",\"doi\":\"10.1007/s10762-024-01009-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work reports an ultra-low noise, multi-stage stagger-tuned low-noise amplifier (MS-ST-LNA) over the D-band performance and achieves a best trade-off between noise, bandwidth, and gain parameters. The ultra-low-noise is achieved in three ways: First, the high-gain 3-stage stagger tuned amplifier (STA) realizes a 3X gain compared to the conventional single-stage amplifier, which sets a low floor noise. Second, the stagger-tuned amplifier achieves 1.6 times lower noise than the traditional single-stage amplifier. Finally, the stagger tune realizes a high-order transfer function, which mitigates the high-frequency noise. The full LNA is implemented and fabricated using a commercial nano-manufacturing 9-nm graphene film FET on a silicon wafer using a 0.065-μm commercial process, occupying an area of 0.21 mm<sup>2</sup>. The proposed design achieves an optimum performance: a maximum measured gain of 20.5 dB and a minimum noise figure (NF) of 4.2 dB over 123.7 to 162.5 GHz. The proposed LNA consumes ultra-low power consumption of 21.3 mW under the power supply of 1.2 V.</p>\",\"PeriodicalId\":16181,\"journal\":{\"name\":\"Journal of Infrared, Millimeter, and Terahertz Waves\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Infrared, Millimeter, and Terahertz Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10762-024-01009-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10762-024-01009-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Performance Analysis of Novel Graphene Process Low-Noise Amplifier with Multi-stage Stagger-Tuned Approach over D-band
This work reports an ultra-low noise, multi-stage stagger-tuned low-noise amplifier (MS-ST-LNA) over the D-band performance and achieves a best trade-off between noise, bandwidth, and gain parameters. The ultra-low-noise is achieved in three ways: First, the high-gain 3-stage stagger tuned amplifier (STA) realizes a 3X gain compared to the conventional single-stage amplifier, which sets a low floor noise. Second, the stagger-tuned amplifier achieves 1.6 times lower noise than the traditional single-stage amplifier. Finally, the stagger tune realizes a high-order transfer function, which mitigates the high-frequency noise. The full LNA is implemented and fabricated using a commercial nano-manufacturing 9-nm graphene film FET on a silicon wafer using a 0.065-μm commercial process, occupying an area of 0.21 mm2. The proposed design achieves an optimum performance: a maximum measured gain of 20.5 dB and a minimum noise figure (NF) of 4.2 dB over 123.7 to 162.5 GHz. The proposed LNA consumes ultra-low power consumption of 21.3 mW under the power supply of 1.2 V.
期刊介绍:
The Journal of Infrared, Millimeter, and Terahertz Waves offers a peer-reviewed platform for the rapid dissemination of original, high-quality research in the frequency window from 30 GHz to 30 THz. The topics covered include: sources, detectors, and other devices; systems, spectroscopy, sensing, interaction between electromagnetic waves and matter, applications, metrology, and communications.
Purely numerical work, especially with commercial software packages, will be published only in very exceptional cases. The same applies to manuscripts describing only algorithms (e.g. pattern recognition algorithms).
Manuscripts submitted to the Journal should discuss a significant advancement to the field of infrared, millimeter, and terahertz waves.