{"title":"无碰撞等离子体中电子和离子空穴的相空间流体力学理论","authors":"Allen Lobo, Vinod Kumar Sayal","doi":"10.1063/5.0216144","DOIUrl":null,"url":null,"abstract":"Phase-space holes are well-known Bernstein–Greene–Kruskal (B.G.K.) modes and are formed by particle-trapping in solitary potential waveforms. They exhibit orbital particle trajectories in the phase-space, due to which they are also referred to as phase-space vortices. In this article, we develop the theory of phase-space hydrodynamics for electron and ion phase-space in collisionless plasmas. The analogy between ordinary two-dimensional fluids and 1D−1V phase-space has been explored by introducing a momentum equation and a phase-space vorticity field, which enable the fluid-like analyses of the plasma phase-space. The developed kinetic-hydrodynamic equations are then employed to address the vortical nature of phase-space holes by exploring their fluid-analogous vortex-like characteristics, an identification technique of phase-space vortices, an exact derivation of the Schamel-df equations, and a measurable definition of the particle-trapping β parameter. This article introduces a new technique to the study of phase-space holes which focuses on the fluid-analogous vortical nature of the phase-space holes and prevents the need for an initial assumption of the trapped and free particle phase-space densities, thus presenting itself as a precursor to the Schamel-pseudopotential method.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theory of phase-space hydrodynamics of electron and ion holes in collisionless plasmas\",\"authors\":\"Allen Lobo, Vinod Kumar Sayal\",\"doi\":\"10.1063/5.0216144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase-space holes are well-known Bernstein–Greene–Kruskal (B.G.K.) modes and are formed by particle-trapping in solitary potential waveforms. They exhibit orbital particle trajectories in the phase-space, due to which they are also referred to as phase-space vortices. In this article, we develop the theory of phase-space hydrodynamics for electron and ion phase-space in collisionless plasmas. The analogy between ordinary two-dimensional fluids and 1D−1V phase-space has been explored by introducing a momentum equation and a phase-space vorticity field, which enable the fluid-like analyses of the plasma phase-space. The developed kinetic-hydrodynamic equations are then employed to address the vortical nature of phase-space holes by exploring their fluid-analogous vortex-like characteristics, an identification technique of phase-space vortices, an exact derivation of the Schamel-df equations, and a measurable definition of the particle-trapping β parameter. This article introduces a new technique to the study of phase-space holes which focuses on the fluid-analogous vortical nature of the phase-space holes and prevents the need for an initial assumption of the trapped and free particle phase-space densities, thus presenting itself as a precursor to the Schamel-pseudopotential method.\",\"PeriodicalId\":20175,\"journal\":{\"name\":\"Physics of Plasmas\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Plasmas\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0216144\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Plasmas","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0216144","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Theory of phase-space hydrodynamics of electron and ion holes in collisionless plasmas
Phase-space holes are well-known Bernstein–Greene–Kruskal (B.G.K.) modes and are formed by particle-trapping in solitary potential waveforms. They exhibit orbital particle trajectories in the phase-space, due to which they are also referred to as phase-space vortices. In this article, we develop the theory of phase-space hydrodynamics for electron and ion phase-space in collisionless plasmas. The analogy between ordinary two-dimensional fluids and 1D−1V phase-space has been explored by introducing a momentum equation and a phase-space vorticity field, which enable the fluid-like analyses of the plasma phase-space. The developed kinetic-hydrodynamic equations are then employed to address the vortical nature of phase-space holes by exploring their fluid-analogous vortex-like characteristics, an identification technique of phase-space vortices, an exact derivation of the Schamel-df equations, and a measurable definition of the particle-trapping β parameter. This article introduces a new technique to the study of phase-space holes which focuses on the fluid-analogous vortical nature of the phase-space holes and prevents the need for an initial assumption of the trapped and free particle phase-space densities, thus presenting itself as a precursor to the Schamel-pseudopotential method.
期刊介绍:
Physics of Plasmas (PoP), published by AIP Publishing in cooperation with the APS Division of Plasma Physics, is committed to the publication of original research in all areas of experimental and theoretical plasma physics. PoP publishes comprehensive and in-depth review manuscripts covering important areas of study and Special Topics highlighting new and cutting-edge developments in plasma physics. Every year a special issue publishes the invited and review papers from the most recent meeting of the APS Division of Plasma Physics. PoP covers a broad range of important research in this dynamic field, including:
-Basic plasma phenomena, waves, instabilities
-Nonlinear phenomena, turbulence, transport
-Magnetically confined plasmas, heating, confinement
-Inertially confined plasmas, high-energy density plasma science, warm dense matter
-Ionospheric, solar-system, and astrophysical plasmas
-Lasers, particle beams, accelerators, radiation generation
-Radiation emission, absorption, and transport
-Low-temperature plasmas, plasma applications, plasma sources, sheaths
-Dusty plasmas