{"title":"双层条件下典型直流辉光放电等离子体中的电子俘获和脱俘","authors":"Thangjam Rishikanta Singh, Sneha Latha Kommuguri, Suraj Kumar Sinha","doi":"10.1063/5.0222639","DOIUrl":null,"url":null,"abstract":"Observation of a dip in plasma density with the rise of ion plasma waves demonstrates the process of detrapping electrons under the double-layer conditions in a DC glow discharge plasma. This study presents an experimental observation of self-excitation and interplay between electron and ion plasma waves when a high positive DC voltage (Vp∼+100 V) is applied to a planar probe immersed in plasma. For lower voltages (Vp∼+5 V), the electron sheath forms on the surface of the probe; however, for sufficiently high applied voltage, plasma could not supply the sufficient number of electrons to shield it from penetrating deep into the plasma. Therefore, the electron-deficient sheath attracts plasma electrons toward the probe, resulting in the excitation of plasma waves and the formation of double layers. Low energy streaming electrons get trapped in the double layers potential step. On ionization of background neutrals, trapped electrons get detrapped. It results in the excitation of ion waves and damping of electron plasma waves. The wavelet analysis of the observed floating potential fluctuations exhibits the interplay between electron and ion plasma waves. The trapping of electrons causes the excitation of electron plasma waves, and detrapping results in the excitation of ion plasma waves as overall electron density dips. It provides new insight into the nonlinear effects of the wave–wave interaction, the onset of Buneman instability, and streaming instability under the double-layer condition.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":"72 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trapping and detrapping of electrons in a typical DC glow discharge plasma under double layer condition\",\"authors\":\"Thangjam Rishikanta Singh, Sneha Latha Kommuguri, Suraj Kumar Sinha\",\"doi\":\"10.1063/5.0222639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Observation of a dip in plasma density with the rise of ion plasma waves demonstrates the process of detrapping electrons under the double-layer conditions in a DC glow discharge plasma. This study presents an experimental observation of self-excitation and interplay between electron and ion plasma waves when a high positive DC voltage (Vp∼+100 V) is applied to a planar probe immersed in plasma. For lower voltages (Vp∼+5 V), the electron sheath forms on the surface of the probe; however, for sufficiently high applied voltage, plasma could not supply the sufficient number of electrons to shield it from penetrating deep into the plasma. Therefore, the electron-deficient sheath attracts plasma electrons toward the probe, resulting in the excitation of plasma waves and the formation of double layers. Low energy streaming electrons get trapped in the double layers potential step. On ionization of background neutrals, trapped electrons get detrapped. It results in the excitation of ion waves and damping of electron plasma waves. The wavelet analysis of the observed floating potential fluctuations exhibits the interplay between electron and ion plasma waves. The trapping of electrons causes the excitation of electron plasma waves, and detrapping results in the excitation of ion plasma waves as overall electron density dips. It provides new insight into the nonlinear effects of the wave–wave interaction, the onset of Buneman instability, and streaming instability under the double-layer condition.\",\"PeriodicalId\":20175,\"journal\":{\"name\":\"Physics of Plasmas\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Plasmas\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0222639\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Plasmas","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0222639","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Trapping and detrapping of electrons in a typical DC glow discharge plasma under double layer condition
Observation of a dip in plasma density with the rise of ion plasma waves demonstrates the process of detrapping electrons under the double-layer conditions in a DC glow discharge plasma. This study presents an experimental observation of self-excitation and interplay between electron and ion plasma waves when a high positive DC voltage (Vp∼+100 V) is applied to a planar probe immersed in plasma. For lower voltages (Vp∼+5 V), the electron sheath forms on the surface of the probe; however, for sufficiently high applied voltage, plasma could not supply the sufficient number of electrons to shield it from penetrating deep into the plasma. Therefore, the electron-deficient sheath attracts plasma electrons toward the probe, resulting in the excitation of plasma waves and the formation of double layers. Low energy streaming electrons get trapped in the double layers potential step. On ionization of background neutrals, trapped electrons get detrapped. It results in the excitation of ion waves and damping of electron plasma waves. The wavelet analysis of the observed floating potential fluctuations exhibits the interplay between electron and ion plasma waves. The trapping of electrons causes the excitation of electron plasma waves, and detrapping results in the excitation of ion plasma waves as overall electron density dips. It provides new insight into the nonlinear effects of the wave–wave interaction, the onset of Buneman instability, and streaming instability under the double-layer condition.
期刊介绍:
Physics of Plasmas (PoP), published by AIP Publishing in cooperation with the APS Division of Plasma Physics, is committed to the publication of original research in all areas of experimental and theoretical plasma physics. PoP publishes comprehensive and in-depth review manuscripts covering important areas of study and Special Topics highlighting new and cutting-edge developments in plasma physics. Every year a special issue publishes the invited and review papers from the most recent meeting of the APS Division of Plasma Physics. PoP covers a broad range of important research in this dynamic field, including:
-Basic plasma phenomena, waves, instabilities
-Nonlinear phenomena, turbulence, transport
-Magnetically confined plasmas, heating, confinement
-Inertially confined plasmas, high-energy density plasma science, warm dense matter
-Ionospheric, solar-system, and astrophysical plasmas
-Lasers, particle beams, accelerators, radiation generation
-Radiation emission, absorption, and transport
-Low-temperature plasmas, plasma applications, plasma sources, sheaths
-Dusty plasmas