DreamMapping:通过变异分布映射实现高保真文本到 3D 的生成

Zeyu Cai, Duotun Wang, Yixun Liang, Zhijing Shao, Ying-Cong Chen, Xiaohang Zhan, Zeyu Wang
{"title":"DreamMapping:通过变异分布映射实现高保真文本到 3D 的生成","authors":"Zeyu Cai, Duotun Wang, Yixun Liang, Zhijing Shao, Ying-Cong Chen, Xiaohang Zhan, Zeyu Wang","doi":"arxiv-2409.05099","DOIUrl":null,"url":null,"abstract":"Score Distillation Sampling (SDS) has emerged as a prevalent technique for\ntext-to-3D generation, enabling 3D content creation by distilling\nview-dependent information from text-to-2D guidance. However, they frequently\nexhibit shortcomings such as over-saturated color and excess smoothness. In\nthis paper, we conduct a thorough analysis of SDS and refine its formulation,\nfinding that the core design is to model the distribution of rendered images.\nFollowing this insight, we introduce a novel strategy called Variational\nDistribution Mapping (VDM), which expedites the distribution modeling process\nby regarding the rendered images as instances of degradation from\ndiffusion-based generation. This special design enables the efficient training\nof variational distribution by skipping the calculations of the Jacobians in\nthe diffusion U-Net. We also introduce timestep-dependent Distribution\nCoefficient Annealing (DCA) to further improve distilling precision. Leveraging\nVDM and DCA, we use Gaussian Splatting as the 3D representation and build a\ntext-to-3D generation framework. Extensive experiments and evaluations\ndemonstrate the capability of VDM and DCA to generate high-fidelity and\nrealistic assets with optimization efficiency.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":"284 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DreamMapping: High-Fidelity Text-to-3D Generation via Variational Distribution Mapping\",\"authors\":\"Zeyu Cai, Duotun Wang, Yixun Liang, Zhijing Shao, Ying-Cong Chen, Xiaohang Zhan, Zeyu Wang\",\"doi\":\"arxiv-2409.05099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Score Distillation Sampling (SDS) has emerged as a prevalent technique for\\ntext-to-3D generation, enabling 3D content creation by distilling\\nview-dependent information from text-to-2D guidance. However, they frequently\\nexhibit shortcomings such as over-saturated color and excess smoothness. In\\nthis paper, we conduct a thorough analysis of SDS and refine its formulation,\\nfinding that the core design is to model the distribution of rendered images.\\nFollowing this insight, we introduce a novel strategy called Variational\\nDistribution Mapping (VDM), which expedites the distribution modeling process\\nby regarding the rendered images as instances of degradation from\\ndiffusion-based generation. This special design enables the efficient training\\nof variational distribution by skipping the calculations of the Jacobians in\\nthe diffusion U-Net. We also introduce timestep-dependent Distribution\\nCoefficient Annealing (DCA) to further improve distilling precision. Leveraging\\nVDM and DCA, we use Gaussian Splatting as the 3D representation and build a\\ntext-to-3D generation framework. Extensive experiments and evaluations\\ndemonstrate the capability of VDM and DCA to generate high-fidelity and\\nrealistic assets with optimization efficiency.\",\"PeriodicalId\":501174,\"journal\":{\"name\":\"arXiv - CS - Graphics\",\"volume\":\"284 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分数蒸馏采样(SDS)已成为文本到三维生成的一种流行技术,它通过从文本到二维的引导中蒸馏出与视图相关的信息,从而实现三维内容的创建。然而,它们经常表现出色彩过度饱和和过度平滑等缺点。在本文中,我们对 SDS 进行了深入分析,并对其表述进行了改进,发现其核心设计是对渲染图像的分布进行建模。根据这一见解,我们引入了一种名为变异分布映射(VariationalDistribution Mapping,VDM)的新策略,通过将渲染图像视为基于扩散生成的退化实例来加快分布建模过程。这种特殊的设计通过跳过扩散 U-Net 中 Jacobian 的计算,实现了高效的变分分布训练。我们还引入了与时间步相关的分布系数退火(DCA),以进一步提高蒸馏精度。利用VDM 和 DCA,我们使用高斯拼接(Gaussian Splatting)作为三维表示,并构建了文本到三维的生成框架。广泛的实验和评估证明,VDM 和 DCA 能够以优化效率生成高保真和逼真的资产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DreamMapping: High-Fidelity Text-to-3D Generation via Variational Distribution Mapping
Score Distillation Sampling (SDS) has emerged as a prevalent technique for text-to-3D generation, enabling 3D content creation by distilling view-dependent information from text-to-2D guidance. However, they frequently exhibit shortcomings such as over-saturated color and excess smoothness. In this paper, we conduct a thorough analysis of SDS and refine its formulation, finding that the core design is to model the distribution of rendered images. Following this insight, we introduce a novel strategy called Variational Distribution Mapping (VDM), which expedites the distribution modeling process by regarding the rendered images as instances of degradation from diffusion-based generation. This special design enables the efficient training of variational distribution by skipping the calculations of the Jacobians in the diffusion U-Net. We also introduce timestep-dependent Distribution Coefficient Annealing (DCA) to further improve distilling precision. Leveraging VDM and DCA, we use Gaussian Splatting as the 3D representation and build a text-to-3D generation framework. Extensive experiments and evaluations demonstrate the capability of VDM and DCA to generate high-fidelity and realistic assets with optimization efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1