P. Tchórz, T. Chodukowski, M. Rosiński, S. Borodziuk, M. Szymański, R. Dudžák, S. Singh, M. Krupka, T. Burian, A. Marchenko, M. Kustosz, S. Agarwal
{"title":"通过改良腔压加速型靶件热核氘-氘聚变产生质子束,作为质子-硼聚变驱动器的候选靶件","authors":"P. Tchórz, T. Chodukowski, M. Rosiński, S. Borodziuk, M. Szymański, R. Dudžák, S. Singh, M. Krupka, T. Burian, A. Marchenko, M. Kustosz, S. Agarwal","doi":"10.1063/5.0207108","DOIUrl":null,"url":null,"abstract":"In this Letter, we report the possibility of generating intense, highly energetic proton beams using terawatt, sub-nanosecond class laser system by irradiating modified cavity pressure acceleration-type targets. In this approach, the main source of few-mega electron volt protons is thermonuclear deuterium–deuterium reaction; therefore, the energy spectrum of accelerated particles and their number is not as strongly related to the laser intensity (laser pulse energy and pulse duration in particular) as in the case of the most common ion acceleration mechanism, namely, target normal sheath acceleration. Performed Monte Carlo simulations suggest that using mentioned mechanism to generate proton beam might be beneficial and efficient driver for laser induced proton–boron fusion when moderate-to-low laser pulse intensities ( ⩽ 1016W/cm2) and thin, lower than 100 μm boron foils are used as catchers.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proton beams generated via thermonuclear deuterium–deuterium fusion by means of modified cavity pressure acceleration-type targets as a candidate for proton–boron fusion driver\",\"authors\":\"P. Tchórz, T. Chodukowski, M. Rosiński, S. Borodziuk, M. Szymański, R. Dudžák, S. Singh, M. Krupka, T. Burian, A. Marchenko, M. Kustosz, S. Agarwal\",\"doi\":\"10.1063/5.0207108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this Letter, we report the possibility of generating intense, highly energetic proton beams using terawatt, sub-nanosecond class laser system by irradiating modified cavity pressure acceleration-type targets. In this approach, the main source of few-mega electron volt protons is thermonuclear deuterium–deuterium reaction; therefore, the energy spectrum of accelerated particles and their number is not as strongly related to the laser intensity (laser pulse energy and pulse duration in particular) as in the case of the most common ion acceleration mechanism, namely, target normal sheath acceleration. Performed Monte Carlo simulations suggest that using mentioned mechanism to generate proton beam might be beneficial and efficient driver for laser induced proton–boron fusion when moderate-to-low laser pulse intensities ( ⩽ 1016W/cm2) and thin, lower than 100 μm boron foils are used as catchers.\",\"PeriodicalId\":20175,\"journal\":{\"name\":\"Physics of Plasmas\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Plasmas\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0207108\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Plasmas","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0207108","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Proton beams generated via thermonuclear deuterium–deuterium fusion by means of modified cavity pressure acceleration-type targets as a candidate for proton–boron fusion driver
In this Letter, we report the possibility of generating intense, highly energetic proton beams using terawatt, sub-nanosecond class laser system by irradiating modified cavity pressure acceleration-type targets. In this approach, the main source of few-mega electron volt protons is thermonuclear deuterium–deuterium reaction; therefore, the energy spectrum of accelerated particles and their number is not as strongly related to the laser intensity (laser pulse energy and pulse duration in particular) as in the case of the most common ion acceleration mechanism, namely, target normal sheath acceleration. Performed Monte Carlo simulations suggest that using mentioned mechanism to generate proton beam might be beneficial and efficient driver for laser induced proton–boron fusion when moderate-to-low laser pulse intensities ( ⩽ 1016W/cm2) and thin, lower than 100 μm boron foils are used as catchers.
期刊介绍:
Physics of Plasmas (PoP), published by AIP Publishing in cooperation with the APS Division of Plasma Physics, is committed to the publication of original research in all areas of experimental and theoretical plasma physics. PoP publishes comprehensive and in-depth review manuscripts covering important areas of study and Special Topics highlighting new and cutting-edge developments in plasma physics. Every year a special issue publishes the invited and review papers from the most recent meeting of the APS Division of Plasma Physics. PoP covers a broad range of important research in this dynamic field, including:
-Basic plasma phenomena, waves, instabilities
-Nonlinear phenomena, turbulence, transport
-Magnetically confined plasmas, heating, confinement
-Inertially confined plasmas, high-energy density plasma science, warm dense matter
-Ionospheric, solar-system, and astrophysical plasmas
-Lasers, particle beams, accelerators, radiation generation
-Radiation emission, absorption, and transport
-Low-temperature plasmas, plasma applications, plasma sources, sheaths
-Dusty plasmas