DiffCSG:通过光栅化实现可微分 CSG

Haocheng Yuan, Adrien Bousseau, Hao Pan, Chengquan Zhang, Niloy J. Mitra, Changjian Li
{"title":"DiffCSG:通过光栅化实现可微分 CSG","authors":"Haocheng Yuan, Adrien Bousseau, Hao Pan, Chengquan Zhang, Niloy J. Mitra, Changjian Li","doi":"arxiv-2409.01421","DOIUrl":null,"url":null,"abstract":"Differentiable rendering is a key ingredient for inverse rendering and\nmachine learning, as it allows to optimize scene parameters (shape, materials,\nlighting) to best fit target images. Differentiable rendering requires that\neach scene parameter relates to pixel values through differentiable operations.\nWhile 3D mesh rendering algorithms have been implemented in a differentiable\nway, these algorithms do not directly extend to Constructive-Solid-Geometry\n(CSG), a popular parametric representation of shapes, because the underlying\nboolean operations are typically performed with complex black-box\nmesh-processing libraries. We present an algorithm, DiffCSG, to render CSG\nmodels in a differentiable manner. Our algorithm builds upon CSG rasterization,\nwhich displays the result of boolean operations between primitives without\nexplicitly computing the resulting mesh and, as such, bypasses black-box mesh\nprocessing. We describe how to implement CSG rasterization within a\ndifferentiable rendering pipeline, taking special care to apply antialiasing\nalong primitive intersections to obtain gradients in such critical areas. Our\nalgorithm is simple and fast, can be easily incorporated into modern machine\nlearning setups, and enables a range of applications for computer-aided design,\nincluding direct and image-based editing of CSG primitives. Code and data:\nhttps://yyyyyhc.github.io/DiffCSG/.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DiffCSG: Differentiable CSG via Rasterization\",\"authors\":\"Haocheng Yuan, Adrien Bousseau, Hao Pan, Chengquan Zhang, Niloy J. Mitra, Changjian Li\",\"doi\":\"arxiv-2409.01421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differentiable rendering is a key ingredient for inverse rendering and\\nmachine learning, as it allows to optimize scene parameters (shape, materials,\\nlighting) to best fit target images. Differentiable rendering requires that\\neach scene parameter relates to pixel values through differentiable operations.\\nWhile 3D mesh rendering algorithms have been implemented in a differentiable\\nway, these algorithms do not directly extend to Constructive-Solid-Geometry\\n(CSG), a popular parametric representation of shapes, because the underlying\\nboolean operations are typically performed with complex black-box\\nmesh-processing libraries. We present an algorithm, DiffCSG, to render CSG\\nmodels in a differentiable manner. Our algorithm builds upon CSG rasterization,\\nwhich displays the result of boolean operations between primitives without\\nexplicitly computing the resulting mesh and, as such, bypasses black-box mesh\\nprocessing. We describe how to implement CSG rasterization within a\\ndifferentiable rendering pipeline, taking special care to apply antialiasing\\nalong primitive intersections to obtain gradients in such critical areas. Our\\nalgorithm is simple and fast, can be easily incorporated into modern machine\\nlearning setups, and enables a range of applications for computer-aided design,\\nincluding direct and image-based editing of CSG primitives. Code and data:\\nhttps://yyyyyhc.github.io/DiffCSG/.\",\"PeriodicalId\":501174,\"journal\":{\"name\":\"arXiv - CS - Graphics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可微分渲染是逆向渲染和机器学习的关键要素,因为它可以优化场景参数(形状、材料、照明),使其最适合目标图像。可微分渲染要求每个场景参数通过可微分运算与像素值相关联。虽然三维网格渲染算法已经以可微分方式实现,但这些算法并不能直接扩展到构造-实体-几何(CSG)--一种流行的形状参数化表示法,因为底层布尔运算通常是通过复杂的黑盒网格处理库来执行的。我们提出了一种以可微分方式渲染 CSG 模型的算法 DiffCSG。我们的算法建立在 CSG 栅格化的基础上,它显示基元之间布尔运算的结果,而不明确计算所产生的网格,因此绕过了黑盒网格处理。我们介绍了如何在可区分的渲染流水线中实现 CSG 光栅化,并特别注意在基元交叉处应用抗锯齿技术,以在这些关键区域获得梯度。该算法简单快速,可轻松集成到现代机器学习设置中,可用于计算机辅助设计的一系列应用,包括 CSG 基元的直接编辑和基于图像的编辑。代码和数据:https://yyyyyhc.github.io/DiffCSG/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DiffCSG: Differentiable CSG via Rasterization
Differentiable rendering is a key ingredient for inverse rendering and machine learning, as it allows to optimize scene parameters (shape, materials, lighting) to best fit target images. Differentiable rendering requires that each scene parameter relates to pixel values through differentiable operations. While 3D mesh rendering algorithms have been implemented in a differentiable way, these algorithms do not directly extend to Constructive-Solid-Geometry (CSG), a popular parametric representation of shapes, because the underlying boolean operations are typically performed with complex black-box mesh-processing libraries. We present an algorithm, DiffCSG, to render CSG models in a differentiable manner. Our algorithm builds upon CSG rasterization, which displays the result of boolean operations between primitives without explicitly computing the resulting mesh and, as such, bypasses black-box mesh processing. We describe how to implement CSG rasterization within a differentiable rendering pipeline, taking special care to apply antialiasing along primitive intersections to obtain gradients in such critical areas. Our algorithm is simple and fast, can be easily incorporated into modern machine learning setups, and enables a range of applications for computer-aided design, including direct and image-based editing of CSG primitives. Code and data: https://yyyyyhc.github.io/DiffCSG/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1