通过函数逼近实现自适应多分辨率编码,实现交互式大规模体积可视化

Jianxin Sun, David Lenz, Hongfeng Yu, Tom Peterka
{"title":"通过函数逼近实现自适应多分辨率编码,实现交互式大规模体积可视化","authors":"Jianxin Sun, David Lenz, Hongfeng Yu, Tom Peterka","doi":"arxiv-2409.00184","DOIUrl":null,"url":null,"abstract":"Functional approximation as a high-order continuous representation provides a\nmore accurate value and gradient query compared to the traditional discrete\nvolume representation. Volume visualization directly rendered from functional\napproximation generates high-quality rendering results without high-order\nartifacts caused by trilinear interpolations. However, querying an encoded\nfunctional approximation is computationally expensive, especially when the\ninput dataset is large, making functional approximation impractical for\ninteractive visualization. In this paper, we proposed a novel functional\napproximation multi-resolution representation, Adaptive-FAM, which is\nlightweight and fast to query. We also design a GPU-accelerated out-of-core\nmulti-resolution volume visualization framework that directly utilizes the\nAdaptive-FAM representation to generate high-quality rendering with interactive\nresponsiveness. Our method can not only dramatically decrease the caching time,\none of the main contributors to input latency, but also effectively improve the\ncache hit rate through prefetching. Our approach significantly outperforms the\ntraditional function approximation method in terms of input latency while\nmaintaining comparable rendering quality.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Multi-Resolution Encoding for Interactive Large-Scale Volume Visualization through Functional Approximation\",\"authors\":\"Jianxin Sun, David Lenz, Hongfeng Yu, Tom Peterka\",\"doi\":\"arxiv-2409.00184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional approximation as a high-order continuous representation provides a\\nmore accurate value and gradient query compared to the traditional discrete\\nvolume representation. Volume visualization directly rendered from functional\\napproximation generates high-quality rendering results without high-order\\nartifacts caused by trilinear interpolations. However, querying an encoded\\nfunctional approximation is computationally expensive, especially when the\\ninput dataset is large, making functional approximation impractical for\\ninteractive visualization. In this paper, we proposed a novel functional\\napproximation multi-resolution representation, Adaptive-FAM, which is\\nlightweight and fast to query. We also design a GPU-accelerated out-of-core\\nmulti-resolution volume visualization framework that directly utilizes the\\nAdaptive-FAM representation to generate high-quality rendering with interactive\\nresponsiveness. Our method can not only dramatically decrease the caching time,\\none of the main contributors to input latency, but also effectively improve the\\ncache hit rate through prefetching. Our approach significantly outperforms the\\ntraditional function approximation method in terms of input latency while\\nmaintaining comparable rendering quality.\",\"PeriodicalId\":501174,\"journal\":{\"name\":\"arXiv - CS - Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与传统的离散体积表示法相比,函数逼近法作为一种高阶连续表示法,能提供更精确的数值和梯度查询。由函数近似直接渲染的体积可视化可生成高质量的渲染结果,而不会出现三线性插值造成的高阶伪影。然而,查询编码函数近似值的计算成本很高,尤其是当输入数据集很大时,这使得函数近似值在交互式可视化中变得不切实际。在本文中,我们提出了一种新颖的函数近似多分辨率表示法--自适应-FAM,它重量轻、查询速度快。我们还设计了一个 GPU 加速的多分辨率体外可视化框架,直接利用 Adaptive-FAM 表示法生成高质量的交互式响应渲染。我们的方法不仅能大幅减少缓存时间(输入延迟的主要因素之一),还能通过预取有效提高缓存命中率。我们的方法在输入延迟方面明显优于传统的函数逼近方法,同时还能保持相当的渲染质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Multi-Resolution Encoding for Interactive Large-Scale Volume Visualization through Functional Approximation
Functional approximation as a high-order continuous representation provides a more accurate value and gradient query compared to the traditional discrete volume representation. Volume visualization directly rendered from functional approximation generates high-quality rendering results without high-order artifacts caused by trilinear interpolations. However, querying an encoded functional approximation is computationally expensive, especially when the input dataset is large, making functional approximation impractical for interactive visualization. In this paper, we proposed a novel functional approximation multi-resolution representation, Adaptive-FAM, which is lightweight and fast to query. We also design a GPU-accelerated out-of-core multi-resolution volume visualization framework that directly utilizes the Adaptive-FAM representation to generate high-quality rendering with interactive responsiveness. Our method can not only dramatically decrease the caching time, one of the main contributors to input latency, but also effectively improve the cache hit rate through prefetching. Our approach significantly outperforms the traditional function approximation method in terms of input latency while maintaining comparable rendering quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1