RenDetNet:弱监督阴影检测与阴影捕捉器验证

Nikolina Kubiak, Elliot Wortman, Armin Mustafa, Graeme Phillipson, Stephen Jolly, Simon Hadfield
{"title":"RenDetNet:弱监督阴影检测与阴影捕捉器验证","authors":"Nikolina Kubiak, Elliot Wortman, Armin Mustafa, Graeme Phillipson, Stephen Jolly, Simon Hadfield","doi":"arxiv-2408.17143","DOIUrl":null,"url":null,"abstract":"Existing shadow detection models struggle to differentiate dark image areas\nfrom shadows. In this paper, we tackle this issue by verifying that all\ndetected shadows are real, i.e. they have paired shadow casters. We perform\nthis step in a physically-accurate manner by differentiably re-rendering the\nscene and observing the changes stemming from carving out estimated shadow\ncasters. Thanks to this approach, the RenDetNet proposed in this paper is the\nfirst learning-based shadow detection model whose supervisory signals can be\ncomputed in a self-supervised manner. The developed system compares favourably\nagainst recent models trained on our data. As part of this publication, we\nrelease our code on github.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":"284 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RenDetNet: Weakly-supervised Shadow Detection with Shadow Caster Verification\",\"authors\":\"Nikolina Kubiak, Elliot Wortman, Armin Mustafa, Graeme Phillipson, Stephen Jolly, Simon Hadfield\",\"doi\":\"arxiv-2408.17143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing shadow detection models struggle to differentiate dark image areas\\nfrom shadows. In this paper, we tackle this issue by verifying that all\\ndetected shadows are real, i.e. they have paired shadow casters. We perform\\nthis step in a physically-accurate manner by differentiably re-rendering the\\nscene and observing the changes stemming from carving out estimated shadow\\ncasters. Thanks to this approach, the RenDetNet proposed in this paper is the\\nfirst learning-based shadow detection model whose supervisory signals can be\\ncomputed in a self-supervised manner. The developed system compares favourably\\nagainst recent models trained on our data. As part of this publication, we\\nrelease our code on github.\",\"PeriodicalId\":501174,\"journal\":{\"name\":\"arXiv - CS - Graphics\",\"volume\":\"284 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.17143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的阴影检测模型很难区分图像中的暗区和阴影。在本文中,我们通过验证所有检测到的阴影都是真实的,即它们有成对的阴影投射者来解决这个问题。我们通过对场景进行差异化的重新渲染,并观察因刻画出估计的阴影投射物而产生的变化,从而以物理精确的方式完成这一步。由于采用了这种方法,本文提出的 RenDetNet 成为第一个基于学习的阴影检测模型,其监督信号可以以自我监督的方式计算。与最近基于我们的数据训练出的模型相比,所开发的系统表现出色。作为本文的一部分,我们在 github 上发布了我们的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RenDetNet: Weakly-supervised Shadow Detection with Shadow Caster Verification
Existing shadow detection models struggle to differentiate dark image areas from shadows. In this paper, we tackle this issue by verifying that all detected shadows are real, i.e. they have paired shadow casters. We perform this step in a physically-accurate manner by differentiably re-rendering the scene and observing the changes stemming from carving out estimated shadow casters. Thanks to this approach, the RenDetNet proposed in this paper is the first learning-based shadow detection model whose supervisory signals can be computed in a self-supervised manner. The developed system compares favourably against recent models trained on our data. As part of this publication, we release our code on github.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1