McGrids:用于等值面提取的蒙特卡罗驱动自适应网格

Daxuan Renınst, Hezi Shiınst, Jianmin Zheng, Jianfei Cai
{"title":"McGrids:用于等值面提取的蒙特卡罗驱动自适应网格","authors":"Daxuan Renınst, Hezi Shiınst, Jianmin Zheng, Jianfei Cai","doi":"arxiv-2409.06710","DOIUrl":null,"url":null,"abstract":"Iso-surface extraction from an implicit field is a fundamental process in\nvarious applications of computer vision and graphics. When dealing with\ngeometric shapes with complicated geometric details, many existing algorithms\nsuffer from high computational costs and memory usage. This paper proposes\nMcGrids, a novel approach to improve the efficiency of iso-surface extraction.\nThe key idea is to construct adaptive grids for iso-surface extraction rather\nthan using a simple uniform grid as prior art does. Specifically, we formulate\nthe problem of constructing adaptive grids as a probability sampling problem,\nwhich is then solved by Monte Carlo process. We demonstrate McGrids' capability\nwith extensive experiments from both analytical SDFs computed from surface\nmeshes and learned implicit fields from real multiview images. The experiment\nresults show that our McGrids can significantly reduce the number of implicit\nfield queries, resulting in significant memory reduction, while producing\nhigh-quality meshes with rich geometric details.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"McGrids: Monte Carlo-Driven Adaptive Grids for Iso-Surface Extraction\",\"authors\":\"Daxuan Renınst, Hezi Shiınst, Jianmin Zheng, Jianfei Cai\",\"doi\":\"arxiv-2409.06710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iso-surface extraction from an implicit field is a fundamental process in\\nvarious applications of computer vision and graphics. When dealing with\\ngeometric shapes with complicated geometric details, many existing algorithms\\nsuffer from high computational costs and memory usage. This paper proposes\\nMcGrids, a novel approach to improve the efficiency of iso-surface extraction.\\nThe key idea is to construct adaptive grids for iso-surface extraction rather\\nthan using a simple uniform grid as prior art does. Specifically, we formulate\\nthe problem of constructing adaptive grids as a probability sampling problem,\\nwhich is then solved by Monte Carlo process. We demonstrate McGrids' capability\\nwith extensive experiments from both analytical SDFs computed from surface\\nmeshes and learned implicit fields from real multiview images. The experiment\\nresults show that our McGrids can significantly reduce the number of implicit\\nfield queries, resulting in significant memory reduction, while producing\\nhigh-quality meshes with rich geometric details.\",\"PeriodicalId\":501174,\"journal\":{\"name\":\"arXiv - CS - Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从隐式场中提取等值面是计算机视觉和图形学各种应用中的一个基本过程。在处理具有复杂几何细节的几何形状时,许多现有算法都面临计算成本高、内存占用大的问题。本文提出了一种提高等值面提取效率的新方法--McGrids,其主要思想是为等值面提取构建自适应网格,而不是像现有技术那样使用简单的均匀网格。具体来说,我们将构建自适应网格的问题表述为一个概率抽样问题,然后通过蒙特卡罗过程来解决。我们通过大量实验证明了 McGrids 的能力,这些实验既包括从曲面剪影中计算出的分析 SDF,也包括从真实多视角图像中学习到的隐式场。实验结果表明,我们的 McGrids 可以大大减少隐式场查询的次数,从而显著减少内存,同时生成具有丰富几何细节的高质量网格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
McGrids: Monte Carlo-Driven Adaptive Grids for Iso-Surface Extraction
Iso-surface extraction from an implicit field is a fundamental process in various applications of computer vision and graphics. When dealing with geometric shapes with complicated geometric details, many existing algorithms suffer from high computational costs and memory usage. This paper proposes McGrids, a novel approach to improve the efficiency of iso-surface extraction. The key idea is to construct adaptive grids for iso-surface extraction rather than using a simple uniform grid as prior art does. Specifically, we formulate the problem of constructing adaptive grids as a probability sampling problem, which is then solved by Monte Carlo process. We demonstrate McGrids' capability with extensive experiments from both analytical SDFs computed from surface meshes and learned implicit fields from real multiview images. The experiment results show that our McGrids can significantly reduce the number of implicit field queries, resulting in significant memory reduction, while producing high-quality meshes with rich geometric details.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1