Zhefei Zhao, Linlin Zhang, Minghao Chen, Ruopeng Yu, Xuyao Yao, Yinghua Xu, Youqun Chu, Xinbiao Mao and Huajun Zheng
{"title":"氧控制电催化在活化 Ag 电极上选择性脱氯 2-氯-5-三氯甲基吡啶","authors":"Zhefei Zhao, Linlin Zhang, Minghao Chen, Ruopeng Yu, Xuyao Yao, Yinghua Xu, Youqun Chu, Xinbiao Mao and Huajun Zheng","doi":"10.1149/1945-7111/ad7534","DOIUrl":null,"url":null,"abstract":"Electrochemical selective dechlorination can be regarded as one of the most promising strategies for generating high-valued chemicals. In the electrochemical dechlorination process of 2-chloro-5-trichloromethylpyridine (TCMP), except the anticipated dechlorination products involving 2-chloro-5-dichloromethylpyridine (DCMP), 2-chloro-5-chloromethylpyridine (CCMP), and 2-chloro-5-methylpyridine (CMP), some unexpected oxygen-incorporated products (6-chloronicotinic acid (CNA) and 6-chloronicotinoyl methyl ester (MCN)) can be obtained. Consequently, understanding the electrochemical dechlorination behavior of TCMP is crucial. Our research revealed that the activated Ag electrodes in halide ion solution exhibit enhanced electrochemical activities for electrochemical dechlorination of TCMP, compared with the pure Ag owing to the increased active specific surface areas and charge transfer. Second, oxygen participation in the reaction is a necessary condition for the formation of oxygen-incorporated products. A 100% selectivity of oxygen-incorporated products can be obtained at the potential of −0.6 V vs Ag/AgCl. Conversely, insufficient oxygen may lead to the potential becoming the determining condition that affects the reaction pathways. A more negative potential (−1.2 V vs Ag/AgCl) is conducive to the formation of dechlorination products with 94.2% conversion and 100% selectivity. This study, for the first time, elucidates the electrocatalyst, atmosphere, and potential-dependent activity and selectivity for the two dechlorination pathways of TCMP.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen-Controlled Electrocatalysis for Selective Dechlorination of 2-Chloro-5-Trichloromethyl Pyridine on Activated Ag Electrode\",\"authors\":\"Zhefei Zhao, Linlin Zhang, Minghao Chen, Ruopeng Yu, Xuyao Yao, Yinghua Xu, Youqun Chu, Xinbiao Mao and Huajun Zheng\",\"doi\":\"10.1149/1945-7111/ad7534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrochemical selective dechlorination can be regarded as one of the most promising strategies for generating high-valued chemicals. In the electrochemical dechlorination process of 2-chloro-5-trichloromethylpyridine (TCMP), except the anticipated dechlorination products involving 2-chloro-5-dichloromethylpyridine (DCMP), 2-chloro-5-chloromethylpyridine (CCMP), and 2-chloro-5-methylpyridine (CMP), some unexpected oxygen-incorporated products (6-chloronicotinic acid (CNA) and 6-chloronicotinoyl methyl ester (MCN)) can be obtained. Consequently, understanding the electrochemical dechlorination behavior of TCMP is crucial. Our research revealed that the activated Ag electrodes in halide ion solution exhibit enhanced electrochemical activities for electrochemical dechlorination of TCMP, compared with the pure Ag owing to the increased active specific surface areas and charge transfer. Second, oxygen participation in the reaction is a necessary condition for the formation of oxygen-incorporated products. A 100% selectivity of oxygen-incorporated products can be obtained at the potential of −0.6 V vs Ag/AgCl. Conversely, insufficient oxygen may lead to the potential becoming the determining condition that affects the reaction pathways. A more negative potential (−1.2 V vs Ag/AgCl) is conducive to the formation of dechlorination products with 94.2% conversion and 100% selectivity. This study, for the first time, elucidates the electrocatalyst, atmosphere, and potential-dependent activity and selectivity for the two dechlorination pathways of TCMP.\",\"PeriodicalId\":17364,\"journal\":{\"name\":\"Journal of The Electrochemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Electrochemical Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1149/1945-7111/ad7534\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad7534","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
电化学选择性脱氯可以说是生成高价值化学品的最有前途的策略之一。在 2-氯-5-三氯甲基吡啶(TCMP)的电化学脱氯过程中,除了涉及 2-氯-5-二氯甲基吡啶(DCMP)的预期脱氯产物外,2-氯-5-二氯甲基吡啶(CCMP)和 2-氯-5-三氯甲基吡啶(TCMP)的电化学选择性脱氯产物均可作为高附加值化学品、(CCMP)和 2-氯-5-甲基吡啶(CMP)外,还可以得到一些意想不到的氧掺杂产物(6-氯烟酸(CNA)和 6-氯烟酸甲酯(MCN))。因此,了解 TCMP 的电化学脱氯行为至关重要。我们的研究发现,与纯银相比,在卤化离子溶液中的活化银电极在 TCMP 的电化学脱氯过程中表现出更强的电化学活性,这是由于活性比表面积和电荷转移增加所致。其次,氧参与反应是形成氧结合产物的必要条件。与 Ag/AgCl 相比,在电位为 -0.6 V 时,氧结合产物的选择性为 100%。相反,氧气不足可能导致电位成为影响反应途径的决定性条件。更负的电位(-1.2 V vs Ag/AgCl)有利于形成脱氯产物,转化率为 94.2%,选择性为 100%。这项研究首次阐明了 TCMP 两种脱氯途径中的电催化剂、气氛以及电势对活性和选择性的影响。
Oxygen-Controlled Electrocatalysis for Selective Dechlorination of 2-Chloro-5-Trichloromethyl Pyridine on Activated Ag Electrode
Electrochemical selective dechlorination can be regarded as one of the most promising strategies for generating high-valued chemicals. In the electrochemical dechlorination process of 2-chloro-5-trichloromethylpyridine (TCMP), except the anticipated dechlorination products involving 2-chloro-5-dichloromethylpyridine (DCMP), 2-chloro-5-chloromethylpyridine (CCMP), and 2-chloro-5-methylpyridine (CMP), some unexpected oxygen-incorporated products (6-chloronicotinic acid (CNA) and 6-chloronicotinoyl methyl ester (MCN)) can be obtained. Consequently, understanding the electrochemical dechlorination behavior of TCMP is crucial. Our research revealed that the activated Ag electrodes in halide ion solution exhibit enhanced electrochemical activities for electrochemical dechlorination of TCMP, compared with the pure Ag owing to the increased active specific surface areas and charge transfer. Second, oxygen participation in the reaction is a necessary condition for the formation of oxygen-incorporated products. A 100% selectivity of oxygen-incorporated products can be obtained at the potential of −0.6 V vs Ag/AgCl. Conversely, insufficient oxygen may lead to the potential becoming the determining condition that affects the reaction pathways. A more negative potential (−1.2 V vs Ag/AgCl) is conducive to the formation of dechlorination products with 94.2% conversion and 100% selectivity. This study, for the first time, elucidates the electrocatalyst, atmosphere, and potential-dependent activity and selectivity for the two dechlorination pathways of TCMP.
期刊介绍:
The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.