Xuan Dinh Ngo, Ngoc Huyen Nguyen, Thi Lan Huong Phung, Tuan Anh Nguyen, Nguyen Thanh Vinh, Quy Nguyen Van, Vinh Hoang Tran, Nhung Pham Tuyet, Anh-Tuan Le
{"title":"解密 p 型 ZnCo2O4 半导体纳米片在选择性增强氧化还原物种系统伏安反应中的作用:界面电子转移动力学和吸附容量","authors":"Xuan Dinh Ngo, Ngoc Huyen Nguyen, Thi Lan Huong Phung, Tuan Anh Nguyen, Nguyen Thanh Vinh, Quy Nguyen Van, Vinh Hoang Tran, Nhung Pham Tuyet, Anh-Tuan Le","doi":"10.1149/1945-7111/ad71fa","DOIUrl":null,"url":null,"abstract":"In this study, we describe experimental efforts to decipher the role of ZnCo<sub>2</sub>O<sub>4</sub> nanoflakes (ZCO-NFs) for selective enhancement of voltammetric responses of screen-printed electrode (SPE) toward redox species system. The ZCO-NFs sample was characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and UV–vis spectroscopy. The electrochemical characterization of bare SPE and modified SPE electrodes was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Mott−Schottky analysis. A series of redox systems including paracetamol (PA), dopamine (DA), chloramphenicol (CAP), furazolidone (FZD), p-nitrophenol (p-NP), carbaryl (CBR), ofloxacin (OXF), and erythromycin (ERY) were selected to investigate for (i) reversible redox process, (ii) irreversible electrochemical oxidation process, and (iii) irreversible electrochemical reduction process on both bare-SPE and ZCO-NFs/SPE electrodes. The obtained results showed that ZCO-NFs possess the selective enhancement of electrochemical response for redox systems with an increase of 24%–90% for PAR, DA, FZD, CAP, and CBR and a decrease of 13%–49% for p-NP, ERY, and OFX. The different electrochemical response of redox species at nanostructured semiconductor electrodes is attributed to the contribution of both the adsorption capacity of redox species and the interfacial electron transfer process between electrode and redox species. An insight into the interfacial electron transfer kinetics and its contribution to the enhancement of electrochemical response on p-type semiconductor electrode is helpful in designing high-performance sensing platforms based on spinel oxide nanostructures.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"108 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the Role of p-Type ZnCo2O4 Semiconductor Nanoflakes for Selective Enhancement of Voltammetric Responses Toward Redox Species System: Interfacial Electron-Transfer Kinetics and Adsorption Capacity\",\"authors\":\"Xuan Dinh Ngo, Ngoc Huyen Nguyen, Thi Lan Huong Phung, Tuan Anh Nguyen, Nguyen Thanh Vinh, Quy Nguyen Van, Vinh Hoang Tran, Nhung Pham Tuyet, Anh-Tuan Le\",\"doi\":\"10.1149/1945-7111/ad71fa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we describe experimental efforts to decipher the role of ZnCo<sub>2</sub>O<sub>4</sub> nanoflakes (ZCO-NFs) for selective enhancement of voltammetric responses of screen-printed electrode (SPE) toward redox species system. The ZCO-NFs sample was characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and UV–vis spectroscopy. The electrochemical characterization of bare SPE and modified SPE electrodes was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Mott−Schottky analysis. A series of redox systems including paracetamol (PA), dopamine (DA), chloramphenicol (CAP), furazolidone (FZD), p-nitrophenol (p-NP), carbaryl (CBR), ofloxacin (OXF), and erythromycin (ERY) were selected to investigate for (i) reversible redox process, (ii) irreversible electrochemical oxidation process, and (iii) irreversible electrochemical reduction process on both bare-SPE and ZCO-NFs/SPE electrodes. The obtained results showed that ZCO-NFs possess the selective enhancement of electrochemical response for redox systems with an increase of 24%–90% for PAR, DA, FZD, CAP, and CBR and a decrease of 13%–49% for p-NP, ERY, and OFX. The different electrochemical response of redox species at nanostructured semiconductor electrodes is attributed to the contribution of both the adsorption capacity of redox species and the interfacial electron transfer process between electrode and redox species. An insight into the interfacial electron transfer kinetics and its contribution to the enhancement of electrochemical response on p-type semiconductor electrode is helpful in designing high-performance sensing platforms based on spinel oxide nanostructures.\",\"PeriodicalId\":17364,\"journal\":{\"name\":\"Journal of The Electrochemical Society\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Electrochemical Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1149/1945-7111/ad71fa\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad71fa","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Deciphering the Role of p-Type ZnCo2O4 Semiconductor Nanoflakes for Selective Enhancement of Voltammetric Responses Toward Redox Species System: Interfacial Electron-Transfer Kinetics and Adsorption Capacity
In this study, we describe experimental efforts to decipher the role of ZnCo2O4 nanoflakes (ZCO-NFs) for selective enhancement of voltammetric responses of screen-printed electrode (SPE) toward redox species system. The ZCO-NFs sample was characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and UV–vis spectroscopy. The electrochemical characterization of bare SPE and modified SPE electrodes was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Mott−Schottky analysis. A series of redox systems including paracetamol (PA), dopamine (DA), chloramphenicol (CAP), furazolidone (FZD), p-nitrophenol (p-NP), carbaryl (CBR), ofloxacin (OXF), and erythromycin (ERY) were selected to investigate for (i) reversible redox process, (ii) irreversible electrochemical oxidation process, and (iii) irreversible electrochemical reduction process on both bare-SPE and ZCO-NFs/SPE electrodes. The obtained results showed that ZCO-NFs possess the selective enhancement of electrochemical response for redox systems with an increase of 24%–90% for PAR, DA, FZD, CAP, and CBR and a decrease of 13%–49% for p-NP, ERY, and OFX. The different electrochemical response of redox species at nanostructured semiconductor electrodes is attributed to the contribution of both the adsorption capacity of redox species and the interfacial electron transfer process between electrode and redox species. An insight into the interfacial electron transfer kinetics and its contribution to the enhancement of electrochemical response on p-type semiconductor electrode is helpful in designing high-performance sensing platforms based on spinel oxide nanostructures.
期刊介绍:
The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.