通过应变工程增强金刚石中的 n 型掺杂

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, APPLIED Journal of Physics D: Applied Physics Pub Date : 2024-09-05 DOI:10.1088/1361-6463/ad7270
Chunmin Cheng, Xiang Sun, Wei Shen, Qijun Wang, Lijie Li, Fang Dong, Kang Liang, Gai Wu
{"title":"通过应变工程增强金刚石中的 n 型掺杂","authors":"Chunmin Cheng, Xiang Sun, Wei Shen, Qijun Wang, Lijie Li, Fang Dong, Kang Liang, Gai Wu","doi":"10.1088/1361-6463/ad7270","DOIUrl":null,"url":null,"abstract":"The utilization of diamond, the ultimate semiconductor, in electronic devices is challenging due to the difficulty of n-type doping. Phosphorus (P)-doped diamond, the most prevalent type of n-type diamond, is still limited by the low solubility of P dopant and undesirable compensating defects such as vacancy defects and hydrogen incorporation. In order to overcome this limitation, strain engineering is introduced to the n-type P-doped diamond theoretically in this work. Uniaxial, equibiaxial, and hydrostatic triaxial strains are applied to the P-doped diamond. The formation energy, charge transition level, defect binding energy and other physical properties of the P-doped diamond are then calculated based on first-principles calculations. The results show that uniaxial, equibiaxial, and hydrostatic triaxial tensile strain can reduce the formation energy and the donor ionization energy of P dopant, and also reduce the binding energy of phosphorus–vacancy (PV) and phosphorus–hydrogen (PH) defects. Our results indicate that under tensile strain, the solubility of the P dopant and the n-type conductivity of the P-doped diamond can be increased, and the formation of compensating defects can be suppressed. Therefore, strain engineering is anticipated to be used to enhance the n-type characteristics of the P-doped diamond, facilitating its application in electronic devices.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"29 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing n-type doping in diamond by strain engineering\",\"authors\":\"Chunmin Cheng, Xiang Sun, Wei Shen, Qijun Wang, Lijie Li, Fang Dong, Kang Liang, Gai Wu\",\"doi\":\"10.1088/1361-6463/ad7270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The utilization of diamond, the ultimate semiconductor, in electronic devices is challenging due to the difficulty of n-type doping. Phosphorus (P)-doped diamond, the most prevalent type of n-type diamond, is still limited by the low solubility of P dopant and undesirable compensating defects such as vacancy defects and hydrogen incorporation. In order to overcome this limitation, strain engineering is introduced to the n-type P-doped diamond theoretically in this work. Uniaxial, equibiaxial, and hydrostatic triaxial strains are applied to the P-doped diamond. The formation energy, charge transition level, defect binding energy and other physical properties of the P-doped diamond are then calculated based on first-principles calculations. The results show that uniaxial, equibiaxial, and hydrostatic triaxial tensile strain can reduce the formation energy and the donor ionization energy of P dopant, and also reduce the binding energy of phosphorus–vacancy (PV) and phosphorus–hydrogen (PH) defects. Our results indicate that under tensile strain, the solubility of the P dopant and the n-type conductivity of the P-doped diamond can be increased, and the formation of compensating defects can be suppressed. Therefore, strain engineering is anticipated to be used to enhance the n-type characteristics of the P-doped diamond, facilitating its application in electronic devices.\",\"PeriodicalId\":16789,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad7270\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad7270","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

由于难以进行 n 型掺杂,在电子设备中利用金刚石这种终极半导体具有挑战性。磷(P)掺杂金刚石是最常见的 n 型金刚石,但仍受限于 P 掺杂剂的低溶解度以及空位缺陷和氢结合等不良补偿缺陷。为了克服这一局限性,本研究从理论上将应变工程引入 n 型 P 掺杂金刚石。对掺杂 P 的金刚石施加了单轴、等轴和静压三轴应变。然后根据第一性原理计算了掺 P 金刚石的形成能、电荷转移水平、缺陷结合能和其他物理性质。结果表明,单轴、等轴和静压三轴拉伸应变能降低掺杂 P 的形成能和供体电离能,也能降低磷-空位(PV)和磷-氢(PH)缺陷的结合能。我们的研究结果表明,在拉伸应变条件下,掺杂 P 的金刚石的 P 溶解度和 n 型电导率可以提高,补偿缺陷的形成也会受到抑制。因此,应变工程有望用于增强掺杂 P 的金刚石的 n 型特性,从而促进其在电子设备中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing n-type doping in diamond by strain engineering
The utilization of diamond, the ultimate semiconductor, in electronic devices is challenging due to the difficulty of n-type doping. Phosphorus (P)-doped diamond, the most prevalent type of n-type diamond, is still limited by the low solubility of P dopant and undesirable compensating defects such as vacancy defects and hydrogen incorporation. In order to overcome this limitation, strain engineering is introduced to the n-type P-doped diamond theoretically in this work. Uniaxial, equibiaxial, and hydrostatic triaxial strains are applied to the P-doped diamond. The formation energy, charge transition level, defect binding energy and other physical properties of the P-doped diamond are then calculated based on first-principles calculations. The results show that uniaxial, equibiaxial, and hydrostatic triaxial tensile strain can reduce the formation energy and the donor ionization energy of P dopant, and also reduce the binding energy of phosphorus–vacancy (PV) and phosphorus–hydrogen (PH) defects. Our results indicate that under tensile strain, the solubility of the P dopant and the n-type conductivity of the P-doped diamond can be increased, and the formation of compensating defects can be suppressed. Therefore, strain engineering is anticipated to be used to enhance the n-type characteristics of the P-doped diamond, facilitating its application in electronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics D: Applied Physics
Journal of Physics D: Applied Physics 物理-物理:应用
CiteScore
6.80
自引率
8.80%
发文量
835
审稿时长
2.1 months
期刊介绍: This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.
期刊最新文献
Recent progresses and applications on chiroptical metamaterials: a review Oxygen vacancies kinetics in TaO 2 − ... Numerical simulations of a low-pressure electrodeless ion source intended for air-breathing electric propulsion Electrical surface breakdown characteristics of micro- and nano-Al2O3 particle co-doped epoxy composites Wide-angle reflection control with a reflective digital coding metasurface for 5G communication systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1