石墨烯负载全介电砷化镓超表面中的法诺和 EIT 可控双共振及其传感和慢光应用

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, APPLIED Journal of Physics D: Applied Physics Pub Date : 2024-09-05 DOI:10.1088/1361-6463/ad73e4
Zhichao Wang, Huahao Huang, Hui Zhang, Miao He, Weiren Zhao
{"title":"石墨烯负载全介电砷化镓超表面中的法诺和 EIT 可控双共振及其传感和慢光应用","authors":"Zhichao Wang, Huahao Huang, Hui Zhang, Miao He, Weiren Zhao","doi":"10.1088/1361-6463/ad73e4","DOIUrl":null,"url":null,"abstract":"Active nanophotonic metasurfaces have attracted considerable attention for their promise to develop compact, tunable optical metadevices with advanced functions. In this work, we theoretically demonstrated the dynamically controllable dual resonances of Fano and electromagnetically induced transparency (EIT) using a graphene-loaded all-dielectric metasurface with U-shaped gallium arsenide (GaAs) nanobars operating in the near-infrared region. The destructive interference between a subradiant mode (i.e. a dark mode) supported by two vertical GaAs bars and two radiative modes (i.e. two bright modes) supported by a horizontal GaAs nanobar gives rise to a Fano resonance and an EIT window with high transmission and a large quality factor (Q-factor) in the transmission spectrum. Importantly, the transmission amplitudes can be flexibly modulated by adjusting the graphene Fermi levels without rebuilding the nanostructures. This modulation results from the controllable light absorption by the loaded graphene monolayer due to its interband losses in the near-infrared spectrum. Furthermore, the peak wavelengths of the Fano resonance and EIT window with high Q-factors are highly sensitive to variations in the refractive index (RI) of the surrounding medium, giving the proposed metasurface a relatively good sensitivity of ∼700 nm RIU<sup>−1</sup> and a high figure of merit of 280, making it an effective RI sensor. Additionally, the metasurface features an adjustable slow light effect, indicated by the adjusted group delay time ranging from 0.12 ps to 0.38 ps. Therefore, the metasurface system proposed in this work offers a viable platform for advanced multi-band optical sensing, low-loss slow light devices, switches, and potential applications in nonlinear optical fields.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controllable dual resonances of Fano and EIT in a graphene-loaded all-dielectric GaAs metasurface and its sensing and slow-light applications\",\"authors\":\"Zhichao Wang, Huahao Huang, Hui Zhang, Miao He, Weiren Zhao\",\"doi\":\"10.1088/1361-6463/ad73e4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active nanophotonic metasurfaces have attracted considerable attention for their promise to develop compact, tunable optical metadevices with advanced functions. In this work, we theoretically demonstrated the dynamically controllable dual resonances of Fano and electromagnetically induced transparency (EIT) using a graphene-loaded all-dielectric metasurface with U-shaped gallium arsenide (GaAs) nanobars operating in the near-infrared region. The destructive interference between a subradiant mode (i.e. a dark mode) supported by two vertical GaAs bars and two radiative modes (i.e. two bright modes) supported by a horizontal GaAs nanobar gives rise to a Fano resonance and an EIT window with high transmission and a large quality factor (Q-factor) in the transmission spectrum. Importantly, the transmission amplitudes can be flexibly modulated by adjusting the graphene Fermi levels without rebuilding the nanostructures. This modulation results from the controllable light absorption by the loaded graphene monolayer due to its interband losses in the near-infrared spectrum. Furthermore, the peak wavelengths of the Fano resonance and EIT window with high Q-factors are highly sensitive to variations in the refractive index (RI) of the surrounding medium, giving the proposed metasurface a relatively good sensitivity of ∼700 nm RIU<sup>−1</sup> and a high figure of merit of 280, making it an effective RI sensor. Additionally, the metasurface features an adjustable slow light effect, indicated by the adjusted group delay time ranging from 0.12 ps to 0.38 ps. Therefore, the metasurface system proposed in this work offers a viable platform for advanced multi-band optical sensing, low-loss slow light devices, switches, and potential applications in nonlinear optical fields.\",\"PeriodicalId\":16789,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad73e4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad73e4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

有源纳米光子元表面因其有望开发出具有先进功能的紧凑型可调光学元器件而备受关注。在这项工作中,我们从理论上证明了利用石墨烯负载的全介质元表面与工作在近红外区域的 U 型砷化镓(GaAs)纳米棒,可动态控制法诺和电磁诱导透明(EIT)双共振。由两根垂直砷化镓纳米棒支持的亚辐射模式(即暗模式)和由一根水平砷化镓纳米棒支持的两个辐射模式(即两个亮模式)之间的破坏性干涉产生了法诺共振和具有高透射率的 EIT 窗口,并且在透射光谱中具有较大的品质因数(Q 因子)。重要的是,可以通过调整石墨烯费米级来灵活调制透射幅度,而无需重建纳米结构。这种调制源于负载石墨烯单层在近红外光谱中的带间损耗所产生的可控光吸收。此外,具有高 Q 因子的法诺共振和 EIT 窗口的峰值波长对周围介质的折射率(RI)变化高度敏感,这使得所提出的元表面具有相对较好的灵敏度(RIU-1 ∼ 700 nm)和 280 的高优点,使其成为一种有效的 RI 传感器。此外,元表面还具有可调节的慢光效应,可调节的群延迟时间范围为 0.12 ps 至 0.38 ps。因此,本研究提出的元表面系统为先进的多波段光学传感、低损耗慢光器件、开关以及非线性光学领域的潜在应用提供了一个可行的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Controllable dual resonances of Fano and EIT in a graphene-loaded all-dielectric GaAs metasurface and its sensing and slow-light applications
Active nanophotonic metasurfaces have attracted considerable attention for their promise to develop compact, tunable optical metadevices with advanced functions. In this work, we theoretically demonstrated the dynamically controllable dual resonances of Fano and electromagnetically induced transparency (EIT) using a graphene-loaded all-dielectric metasurface with U-shaped gallium arsenide (GaAs) nanobars operating in the near-infrared region. The destructive interference between a subradiant mode (i.e. a dark mode) supported by two vertical GaAs bars and two radiative modes (i.e. two bright modes) supported by a horizontal GaAs nanobar gives rise to a Fano resonance and an EIT window with high transmission and a large quality factor (Q-factor) in the transmission spectrum. Importantly, the transmission amplitudes can be flexibly modulated by adjusting the graphene Fermi levels without rebuilding the nanostructures. This modulation results from the controllable light absorption by the loaded graphene monolayer due to its interband losses in the near-infrared spectrum. Furthermore, the peak wavelengths of the Fano resonance and EIT window with high Q-factors are highly sensitive to variations in the refractive index (RI) of the surrounding medium, giving the proposed metasurface a relatively good sensitivity of ∼700 nm RIU−1 and a high figure of merit of 280, making it an effective RI sensor. Additionally, the metasurface features an adjustable slow light effect, indicated by the adjusted group delay time ranging from 0.12 ps to 0.38 ps. Therefore, the metasurface system proposed in this work offers a viable platform for advanced multi-band optical sensing, low-loss slow light devices, switches, and potential applications in nonlinear optical fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics D: Applied Physics
Journal of Physics D: Applied Physics 物理-物理:应用
CiteScore
6.80
自引率
8.80%
发文量
835
审稿时长
2.1 months
期刊介绍: This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.
期刊最新文献
Non-itinerant-type ferromagnetism and the magnetocaloric response of quinary all-d-metal ribbon: Ni35Mn34.5Co14Fe1Ti15.5 Advances in optical recording techniques for non-invasive monitoring of electrophysiological signals On adhesive contact between spheres with rolling adhesion Heusler alloy Mn2CoAl: structural, magnetic and electronic properties Influence factors and improvement scheme on the breakdown behavior of pseudospark switch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1