{"title":"利用时延飞秒激光双脉冲序列烧蚀单晶硅","authors":"Zhengjie Fan, Liangtian Yi, Jing Lv, Wenjun Wang, Guoji Li, Jianlei Cui","doi":"10.1088/1361-6463/ad7300","DOIUrl":null,"url":null,"abstract":"A double-pulse femtosecond laser is used to process single-crystal silicon. Modulating the delay time was discovered to increase the ablation depth and improve the morphology of the ablated surface. The hole fabricated by a dual-pulse with a 200 ps interval is 24.4% deeper than that created by a single pulse of the same energy. Moreover, utilizing a dual pulse with an interval ranging from 100 to 1000 ps produces a considerably smoother ablation area as compared to the single pulse. The effect of the sub-pulse energy ratio of the double-pulse femtosecond laser on the size and morphology of the ablated area was also investigated. As the sub-pulse energy ratio decreases from 3:1 to 1:3, the size of the ablation area initially decreases and then increases, while the size of the ablation area is minimized when the sub-pulse ratio is 1:1, enabling precise control over the machining size. As the energy of the second sub-pulse increases, the ablation area becomes smoother due to the plasma heating of the double-pulse femtosecond laser.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"9 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-crystal silicon ablation with temporally delayed femtosecond laser double-pulse trains\",\"authors\":\"Zhengjie Fan, Liangtian Yi, Jing Lv, Wenjun Wang, Guoji Li, Jianlei Cui\",\"doi\":\"10.1088/1361-6463/ad7300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A double-pulse femtosecond laser is used to process single-crystal silicon. Modulating the delay time was discovered to increase the ablation depth and improve the morphology of the ablated surface. The hole fabricated by a dual-pulse with a 200 ps interval is 24.4% deeper than that created by a single pulse of the same energy. Moreover, utilizing a dual pulse with an interval ranging from 100 to 1000 ps produces a considerably smoother ablation area as compared to the single pulse. The effect of the sub-pulse energy ratio of the double-pulse femtosecond laser on the size and morphology of the ablated area was also investigated. As the sub-pulse energy ratio decreases from 3:1 to 1:3, the size of the ablation area initially decreases and then increases, while the size of the ablation area is minimized when the sub-pulse ratio is 1:1, enabling precise control over the machining size. As the energy of the second sub-pulse increases, the ablation area becomes smoother due to the plasma heating of the double-pulse femtosecond laser.\",\"PeriodicalId\":16789,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad7300\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad7300","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Single-crystal silicon ablation with temporally delayed femtosecond laser double-pulse trains
A double-pulse femtosecond laser is used to process single-crystal silicon. Modulating the delay time was discovered to increase the ablation depth and improve the morphology of the ablated surface. The hole fabricated by a dual-pulse with a 200 ps interval is 24.4% deeper than that created by a single pulse of the same energy. Moreover, utilizing a dual pulse with an interval ranging from 100 to 1000 ps produces a considerably smoother ablation area as compared to the single pulse. The effect of the sub-pulse energy ratio of the double-pulse femtosecond laser on the size and morphology of the ablated area was also investigated. As the sub-pulse energy ratio decreases from 3:1 to 1:3, the size of the ablation area initially decreases and then increases, while the size of the ablation area is minimized when the sub-pulse ratio is 1:1, enabling precise control over the machining size. As the energy of the second sub-pulse increases, the ablation area becomes smoother due to the plasma heating of the double-pulse femtosecond laser.
期刊介绍:
This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.