Céline Ruscher, Robinson Cortes-Huerto, Robert Hannebauer, Debashish Mukherji, Alireza Nojeh, A Srikantha Phani
{"title":"通过表面钝化调节硅纳米线的热导率","authors":"Céline Ruscher, Robinson Cortes-Huerto, Robert Hannebauer, Debashish Mukherji, Alireza Nojeh, A Srikantha Phani","doi":"10.1088/1361-6463/ad6fae","DOIUrl":null,"url":null,"abstract":"Using large scale molecular dynamics simulations, we study the thermal conductivity of bare and surface passivated silicon nanowires (SiNWs). For the cross–sectional widths <inline-formula>\n<tex-math><?CDATA $w \\unicode{x2A7D} 2$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>w</mml:mi><mml:mtext>⩽</mml:mtext><mml:mn>2</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"dad6faeieqn1.gif\"></inline-graphic></inline-formula> nm, SiNWs become unstable because of the surface amorphization and also due to the evaporation of a certain fraction of Si atoms. The observed surface (in–)stability is related to a large excess energy Δ of the surface Si atoms with respect to the bulk Si, resulting from the surface atoms being less coordinated and having dangling bonds. We first propose a practically relevant method that uses Δ as a guiding tool to passivate these dangling bonds with hydrogen or oxygen, stabilizing the SiNWs. These passivated SiNWs are used to calculate the thermal conductivity coefficient <italic toggle=\"yes\">κ</italic>. While the expected trend of <inline-formula>\n<tex-math><?CDATA $\\kappa \\propto w$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>κ</mml:mi><mml:mo>∝</mml:mo><mml:mi>w</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\"dad6faeieqn2.gif\"></inline-graphic></inline-formula> is observed for all SiNWs, surface passivation provides an added flexibility of tuning <italic toggle=\"yes\">κ</italic> with the surface coverage concentration <italic toggle=\"yes\">c</italic> of passivated atoms. Indeed, with respect to the bulk <italic toggle=\"yes\">κ</italic>, passivation of SiNW reduces <italic toggle=\"yes\">κ</italic> by 75%–80% for <inline-formula>\n<tex-math><?CDATA $c \\to 50\\%$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>c</mml:mi><mml:mo accent=\"false\" stretchy=\"false\">→</mml:mo><mml:mn>50</mml:mn><mml:mi mathvariant=\"normal\">%</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\"dad6faeieqn3.gif\"></inline-graphic></inline-formula> and increases it by 50% for the fully passivated samples. Analyzing the phonon band structures via spectral energy density, we discuss separate contributions from the surface and the core to <italic toggle=\"yes\">κ</italic>. Our results also reveal that surface passivation increases SiNW stiffness, contributing to the tunability in <italic toggle=\"yes\">κ</italic>.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"11 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning the thermal conductivity of silicon nanowires by surface passivation\",\"authors\":\"Céline Ruscher, Robinson Cortes-Huerto, Robert Hannebauer, Debashish Mukherji, Alireza Nojeh, A Srikantha Phani\",\"doi\":\"10.1088/1361-6463/ad6fae\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using large scale molecular dynamics simulations, we study the thermal conductivity of bare and surface passivated silicon nanowires (SiNWs). For the cross–sectional widths <inline-formula>\\n<tex-math><?CDATA $w \\\\unicode{x2A7D} 2$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>w</mml:mi><mml:mtext>⩽</mml:mtext><mml:mn>2</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\\\"dad6faeieqn1.gif\\\"></inline-graphic></inline-formula> nm, SiNWs become unstable because of the surface amorphization and also due to the evaporation of a certain fraction of Si atoms. The observed surface (in–)stability is related to a large excess energy Δ of the surface Si atoms with respect to the bulk Si, resulting from the surface atoms being less coordinated and having dangling bonds. We first propose a practically relevant method that uses Δ as a guiding tool to passivate these dangling bonds with hydrogen or oxygen, stabilizing the SiNWs. These passivated SiNWs are used to calculate the thermal conductivity coefficient <italic toggle=\\\"yes\\\">κ</italic>. While the expected trend of <inline-formula>\\n<tex-math><?CDATA $\\\\kappa \\\\propto w$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>κ</mml:mi><mml:mo>∝</mml:mo><mml:mi>w</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\\\"dad6faeieqn2.gif\\\"></inline-graphic></inline-formula> is observed for all SiNWs, surface passivation provides an added flexibility of tuning <italic toggle=\\\"yes\\\">κ</italic> with the surface coverage concentration <italic toggle=\\\"yes\\\">c</italic> of passivated atoms. Indeed, with respect to the bulk <italic toggle=\\\"yes\\\">κ</italic>, passivation of SiNW reduces <italic toggle=\\\"yes\\\">κ</italic> by 75%–80% for <inline-formula>\\n<tex-math><?CDATA $c \\\\to 50\\\\%$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>c</mml:mi><mml:mo accent=\\\"false\\\" stretchy=\\\"false\\\">→</mml:mo><mml:mn>50</mml:mn><mml:mi mathvariant=\\\"normal\\\">%</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\\\"dad6faeieqn3.gif\\\"></inline-graphic></inline-formula> and increases it by 50% for the fully passivated samples. Analyzing the phonon band structures via spectral energy density, we discuss separate contributions from the surface and the core to <italic toggle=\\\"yes\\\">κ</italic>. Our results also reveal that surface passivation increases SiNW stiffness, contributing to the tunability in <italic toggle=\\\"yes\\\">κ</italic>.\",\"PeriodicalId\":16789,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad6fae\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad6fae","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Tuning the thermal conductivity of silicon nanowires by surface passivation
Using large scale molecular dynamics simulations, we study the thermal conductivity of bare and surface passivated silicon nanowires (SiNWs). For the cross–sectional widths w⩽2 nm, SiNWs become unstable because of the surface amorphization and also due to the evaporation of a certain fraction of Si atoms. The observed surface (in–)stability is related to a large excess energy Δ of the surface Si atoms with respect to the bulk Si, resulting from the surface atoms being less coordinated and having dangling bonds. We first propose a practically relevant method that uses Δ as a guiding tool to passivate these dangling bonds with hydrogen or oxygen, stabilizing the SiNWs. These passivated SiNWs are used to calculate the thermal conductivity coefficient κ. While the expected trend of κ∝w is observed for all SiNWs, surface passivation provides an added flexibility of tuning κ with the surface coverage concentration c of passivated atoms. Indeed, with respect to the bulk κ, passivation of SiNW reduces κ by 75%–80% for c→50% and increases it by 50% for the fully passivated samples. Analyzing the phonon band structures via spectral energy density, we discuss separate contributions from the surface and the core to κ. Our results also reveal that surface passivation increases SiNW stiffness, contributing to the tunability in κ.
期刊介绍:
This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.