采用介质楔的高性能微波等离子体源

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, APPLIED Journal of Physics D: Applied Physics Pub Date : 2024-08-29 DOI:10.1088/1361-6463/ad7148
Fengming Yang, Wencong Zhang, Kama Huang, Yang Yang, Huacheng Zhu
{"title":"采用介质楔的高性能微波等离子体源","authors":"Fengming Yang, Wencong Zhang, Kama Huang, Yang Yang, Huacheng Zhu","doi":"10.1088/1361-6463/ad7148","DOIUrl":null,"url":null,"abstract":"The microwave-to-plasma energy conversion efficiency and the ease of plasma self-ignition are critical factors affecting the applications for microwave plasma sources (MPSs). This study presents a novel MPS utilizing dielectric wedges for self-ignition and improved energy conversion. Firstly, we crafted a dielectric wedge with a gradient refractive index, guiding the electric field from air to dielectric materials and facilitating microwave propagation along the dielectric in a waveguide. Through electromagnetic simulation, we explored how the size and permittivity of the dielectric wedge affect the electric field distribution. Then, the MPS based on the dielectric wedge was designed. In this configuration, a dielectric tube encloses the discharge tube, connecting to dielectric wedges to guide electromagnetic waves to the plasma. We analyzed the MPS performance using the Drude model, evaluating microwave energy conversion efficiency across various electron densities and collision frequencies. The results were compared with a commonly used MPS based on a tapered waveguide, demonstrating the proposed MPS has wider applicability across different operation conditions. Finally, experiments under low pressures were conducted using various gases, showing an average energy conversion efficiency of approximately 40% higher than the tapered waveguide MPS. The experiments also indicate the proposed MPS has a greater capability of self-ignition at lower power levels. These findings highlight the efficacy of incorporating dielectric wedges to enhance MPS performance, making it conducive for broader industrial applications.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"438 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-performance microwave plasma source employing dielectric wedges\",\"authors\":\"Fengming Yang, Wencong Zhang, Kama Huang, Yang Yang, Huacheng Zhu\",\"doi\":\"10.1088/1361-6463/ad7148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The microwave-to-plasma energy conversion efficiency and the ease of plasma self-ignition are critical factors affecting the applications for microwave plasma sources (MPSs). This study presents a novel MPS utilizing dielectric wedges for self-ignition and improved energy conversion. Firstly, we crafted a dielectric wedge with a gradient refractive index, guiding the electric field from air to dielectric materials and facilitating microwave propagation along the dielectric in a waveguide. Through electromagnetic simulation, we explored how the size and permittivity of the dielectric wedge affect the electric field distribution. Then, the MPS based on the dielectric wedge was designed. In this configuration, a dielectric tube encloses the discharge tube, connecting to dielectric wedges to guide electromagnetic waves to the plasma. We analyzed the MPS performance using the Drude model, evaluating microwave energy conversion efficiency across various electron densities and collision frequencies. The results were compared with a commonly used MPS based on a tapered waveguide, demonstrating the proposed MPS has wider applicability across different operation conditions. Finally, experiments under low pressures were conducted using various gases, showing an average energy conversion efficiency of approximately 40% higher than the tapered waveguide MPS. The experiments also indicate the proposed MPS has a greater capability of self-ignition at lower power levels. These findings highlight the efficacy of incorporating dielectric wedges to enhance MPS performance, making it conducive for broader industrial applications.\",\"PeriodicalId\":16789,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":\"438 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad7148\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad7148","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

微波到等离子体的能量转换效率和等离子体自点火的难易程度是影响微波等离子体源(MPS)应用的关键因素。本研究提出了一种利用介质楔实现自点火和改进能量转换的新型 MPS。首先,我们制作了具有梯度折射率的介质楔,将电场从空气引导至介质材料,并促进微波沿介质在波导中传播。通过电磁仿真,我们探索了介质楔的尺寸和介电系数如何影响电场分布。然后,我们设计了基于介质楔的 MPS。在这种配置中,介质管包围着放电管,与介质楔连接,将电磁波导向等离子体。我们利用德鲁德模型分析了 MPS 的性能,评估了不同电子密度和碰撞频率下的微波能量转换效率。我们将结果与基于锥形波导的常用 MPS 进行了比较,结果表明所提出的 MPS 在不同工作条件下具有更广泛的适用性。最后,使用各种气体进行了低压实验,结果显示平均能量转换效率比锥形波导 MPS 高出约 40%。实验还表明,拟议的 MPS 在较低功率水平下具有更强的自点火能力。这些发现凸显了结合介质楔来提高 MPS 性能的功效,使其有利于更广泛的工业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A high-performance microwave plasma source employing dielectric wedges
The microwave-to-plasma energy conversion efficiency and the ease of plasma self-ignition are critical factors affecting the applications for microwave plasma sources (MPSs). This study presents a novel MPS utilizing dielectric wedges for self-ignition and improved energy conversion. Firstly, we crafted a dielectric wedge with a gradient refractive index, guiding the electric field from air to dielectric materials and facilitating microwave propagation along the dielectric in a waveguide. Through electromagnetic simulation, we explored how the size and permittivity of the dielectric wedge affect the electric field distribution. Then, the MPS based on the dielectric wedge was designed. In this configuration, a dielectric tube encloses the discharge tube, connecting to dielectric wedges to guide electromagnetic waves to the plasma. We analyzed the MPS performance using the Drude model, evaluating microwave energy conversion efficiency across various electron densities and collision frequencies. The results were compared with a commonly used MPS based on a tapered waveguide, demonstrating the proposed MPS has wider applicability across different operation conditions. Finally, experiments under low pressures were conducted using various gases, showing an average energy conversion efficiency of approximately 40% higher than the tapered waveguide MPS. The experiments also indicate the proposed MPS has a greater capability of self-ignition at lower power levels. These findings highlight the efficacy of incorporating dielectric wedges to enhance MPS performance, making it conducive for broader industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics D: Applied Physics
Journal of Physics D: Applied Physics 物理-物理:应用
CiteScore
6.80
自引率
8.80%
发文量
835
审稿时长
2.1 months
期刊介绍: This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.
期刊最新文献
Recent progresses and applications on chiroptical metamaterials: a review Oxygen vacancies kinetics in TaO 2 − ... Numerical simulations of a low-pressure electrodeless ion source intended for air-breathing electric propulsion Electrical surface breakdown characteristics of micro- and nano-Al2O3 particle co-doped epoxy composites Wide-angle reflection control with a reflective digital coding metasurface for 5G communication systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1