Lihua Zhang, Xiaotong Ren, Yafei Guo, Ruifeng Zhao, Xiaoyu Jiang, Xi Wei, Linqi Yang, Lifang Kang
{"title":"植物功能特性是沙漠草原降水量变化下生态系统生产力的有力预测指标","authors":"Lihua Zhang, Xiaotong Ren, Yafei Guo, Ruifeng Zhao, Xiaoyu Jiang, Xi Wei, Linqi Yang, Lifang Kang","doi":"10.1002/eco.2686","DOIUrl":null,"url":null,"abstract":"<p>The relationship between biodiversity and ecosystem function has always been one of the hot issues in the field of ecology. With the acceleration of global warming, the precipitation pattern has become one of the main drivers of biodiversity loss, which has a profound impact on ecosystem functional services and stability. However, the studies on the effects and mechanisms of plant community diversity and ecosystem productivity under precipitation changes in desert steppe are still unclear. According to the change rate (−41.1% to 39.2%) of precipitation in the study area in recent 50 years, five precipitation gradients (i.e., −40%, −20%, CK, +20% and +40%) were set to simulate the possible future precipitation pattern changes. Aboveground biomass increased with the increase of precipitation. Compared with CK, the aboveground biomass increased by 22.81% with +40% and decreased by 80.71% with −40%, and the negative impact of precipitation decrease on aboveground biomass was more significant. Through multiple stepwise regression analyses, species diversity, functional diversity and phylogenetic diversity were identified as the best models of aboveground biomass. The results showed that the aboveground biomass changes could be explained by 51.3%, 81.6%, 32.6% and 60% respectively. Combined with plant community diversity, the final index model was obtained through multiple stepwise regression analyses, which could explain 88.3% of changes in aboveground biomass. In this model, The average coefficient of specific leaf area and leaf thickness had a very high significance level, and these two functional traits of dominant species had a greater explanatory power for ecosystem system function. There was a nonlinear correlation between precipitation and aboveground biomass, and drought had a more significant negative effect on aboveground biomass. Compared with species diversity and phylogenetic diversity, plant functional traits can better explain ecosystem productivity. Selection effects are the main maintenance mechanism of desert steppe community productivity under the background of precipitation change.</p>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":"17 7","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plant functional trait is a strong predictor of ecosystem productivity under altered precipitation in desert steppes\",\"authors\":\"Lihua Zhang, Xiaotong Ren, Yafei Guo, Ruifeng Zhao, Xiaoyu Jiang, Xi Wei, Linqi Yang, Lifang Kang\",\"doi\":\"10.1002/eco.2686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The relationship between biodiversity and ecosystem function has always been one of the hot issues in the field of ecology. With the acceleration of global warming, the precipitation pattern has become one of the main drivers of biodiversity loss, which has a profound impact on ecosystem functional services and stability. However, the studies on the effects and mechanisms of plant community diversity and ecosystem productivity under precipitation changes in desert steppe are still unclear. According to the change rate (−41.1% to 39.2%) of precipitation in the study area in recent 50 years, five precipitation gradients (i.e., −40%, −20%, CK, +20% and +40%) were set to simulate the possible future precipitation pattern changes. Aboveground biomass increased with the increase of precipitation. Compared with CK, the aboveground biomass increased by 22.81% with +40% and decreased by 80.71% with −40%, and the negative impact of precipitation decrease on aboveground biomass was more significant. Through multiple stepwise regression analyses, species diversity, functional diversity and phylogenetic diversity were identified as the best models of aboveground biomass. The results showed that the aboveground biomass changes could be explained by 51.3%, 81.6%, 32.6% and 60% respectively. Combined with plant community diversity, the final index model was obtained through multiple stepwise regression analyses, which could explain 88.3% of changes in aboveground biomass. In this model, The average coefficient of specific leaf area and leaf thickness had a very high significance level, and these two functional traits of dominant species had a greater explanatory power for ecosystem system function. There was a nonlinear correlation between precipitation and aboveground biomass, and drought had a more significant negative effect on aboveground biomass. Compared with species diversity and phylogenetic diversity, plant functional traits can better explain ecosystem productivity. Selection effects are the main maintenance mechanism of desert steppe community productivity under the background of precipitation change.</p>\",\"PeriodicalId\":55169,\"journal\":{\"name\":\"Ecohydrology\",\"volume\":\"17 7\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecohydrology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eco.2686\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.2686","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Plant functional trait is a strong predictor of ecosystem productivity under altered precipitation in desert steppes
The relationship between biodiversity and ecosystem function has always been one of the hot issues in the field of ecology. With the acceleration of global warming, the precipitation pattern has become one of the main drivers of biodiversity loss, which has a profound impact on ecosystem functional services and stability. However, the studies on the effects and mechanisms of plant community diversity and ecosystem productivity under precipitation changes in desert steppe are still unclear. According to the change rate (−41.1% to 39.2%) of precipitation in the study area in recent 50 years, five precipitation gradients (i.e., −40%, −20%, CK, +20% and +40%) were set to simulate the possible future precipitation pattern changes. Aboveground biomass increased with the increase of precipitation. Compared with CK, the aboveground biomass increased by 22.81% with +40% and decreased by 80.71% with −40%, and the negative impact of precipitation decrease on aboveground biomass was more significant. Through multiple stepwise regression analyses, species diversity, functional diversity and phylogenetic diversity were identified as the best models of aboveground biomass. The results showed that the aboveground biomass changes could be explained by 51.3%, 81.6%, 32.6% and 60% respectively. Combined with plant community diversity, the final index model was obtained through multiple stepwise regression analyses, which could explain 88.3% of changes in aboveground biomass. In this model, The average coefficient of specific leaf area and leaf thickness had a very high significance level, and these two functional traits of dominant species had a greater explanatory power for ecosystem system function. There was a nonlinear correlation between precipitation and aboveground biomass, and drought had a more significant negative effect on aboveground biomass. Compared with species diversity and phylogenetic diversity, plant functional traits can better explain ecosystem productivity. Selection effects are the main maintenance mechanism of desert steppe community productivity under the background of precipitation change.
期刊介绍:
Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management.
Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.