运动障碍的下一步:超运动障碍的神经成像方案

IF 2.4 3区 医学 Q3 NEUROSCIENCES Frontiers in Human Neuroscience Pub Date : 2024-08-30 DOI:10.3389/fnhum.2024.1406786
Jelle R. Dalenberg, Debora E. Peretti, Lenny R. Marapin, A. M. Madelein van der Stouwe, Remco J. Renken, Marina A. J. Tijssen
{"title":"运动障碍的下一步:超运动障碍的神经成像方案","authors":"Jelle R. Dalenberg, Debora E. Peretti, Lenny R. Marapin, A. M. Madelein van der Stouwe, Remco J. Renken, Marina A. J. Tijssen","doi":"10.3389/fnhum.2024.1406786","DOIUrl":null,"url":null,"abstract":"IntroductionThe Next Move in Movement Disorders (NEMO) study is an initiative aimed at advancing our understanding and the classification of hyperkinetic movement disorders, including tremor, myoclonus, dystonia, and myoclonus-dystonia. The study has two main objectives: (a) to develop a computer-aided tool for precise and consistent classification of these movement disorder phenotypes, and (b) to deepen our understanding of brain pathophysiology through advanced neuroimaging techniques. This protocol review details the neuroimaging data acquisition and preprocessing procedures employed by the NEMO team to achieve these goals.Methods and analysisTo meet the study’s objectives, NEMO utilizes multiple imaging techniques, including T1-weighted structural MRI, resting-state fMRI, motor task fMRI, and 18F-FDG PET scans. We will outline our efforts over the past 4 years to enhance the quality of our collected data, and address challenges such as head movements during image acquisition, choosing acquisition parameters and constructing data preprocessing pipelines. This study is the first to employ these neuroimaging modalities in a standardized approach contributing to more uniformity in the analyses of future studies comparing these patient groups. The data collected will contribute to the development of a machine learning-based classification tool and improve our understanding of disorder-specific neurobiological factors.Ethics and disseminationEthical approval has been obtained from the relevant local ethics committee. The NEMO study is designed to pioneer the application of machine learning of movement disorders. We expect to publish articles in multiple related fields of research and patients will be informed of important results via patient associations and press releases.","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Next move in movement disorders: neuroimaging protocols for hyperkinetic movement disorders\",\"authors\":\"Jelle R. Dalenberg, Debora E. Peretti, Lenny R. Marapin, A. M. Madelein van der Stouwe, Remco J. Renken, Marina A. J. Tijssen\",\"doi\":\"10.3389/fnhum.2024.1406786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IntroductionThe Next Move in Movement Disorders (NEMO) study is an initiative aimed at advancing our understanding and the classification of hyperkinetic movement disorders, including tremor, myoclonus, dystonia, and myoclonus-dystonia. The study has two main objectives: (a) to develop a computer-aided tool for precise and consistent classification of these movement disorder phenotypes, and (b) to deepen our understanding of brain pathophysiology through advanced neuroimaging techniques. This protocol review details the neuroimaging data acquisition and preprocessing procedures employed by the NEMO team to achieve these goals.Methods and analysisTo meet the study’s objectives, NEMO utilizes multiple imaging techniques, including T1-weighted structural MRI, resting-state fMRI, motor task fMRI, and 18F-FDG PET scans. We will outline our efforts over the past 4 years to enhance the quality of our collected data, and address challenges such as head movements during image acquisition, choosing acquisition parameters and constructing data preprocessing pipelines. This study is the first to employ these neuroimaging modalities in a standardized approach contributing to more uniformity in the analyses of future studies comparing these patient groups. The data collected will contribute to the development of a machine learning-based classification tool and improve our understanding of disorder-specific neurobiological factors.Ethics and disseminationEthical approval has been obtained from the relevant local ethics committee. The NEMO study is designed to pioneer the application of machine learning of movement disorders. We expect to publish articles in multiple related fields of research and patients will be informed of important results via patient associations and press releases.\",\"PeriodicalId\":12536,\"journal\":{\"name\":\"Frontiers in Human Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Human Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnhum.2024.1406786\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Human Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnhum.2024.1406786","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

导言运动障碍的下一步研究(NEMO)是一项旨在促进我们对震颤、肌阵挛、肌张力障碍和肌阵挛-肌张力障碍等运动功能亢进症的理解和分类的研究。该研究有两个主要目标:(a)开发一种计算机辅助工具,用于对这些运动障碍表型进行精确一致的分类;(b)通过先进的神经成像技术加深我们对大脑病理生理学的理解。为了实现研究目标,NEMO 采用了多种成像技术,包括 T1 加权结构 MRI、静息态 fMRI、运动任务 fMRI 和 18F-FDG PET 扫描。我们将概述过去 4 年来我们为提高所收集数据的质量所做的努力,并解决图像采集过程中的头部运动、选择采集参数和构建数据预处理管道等难题。这项研究首次以标准化的方法采用了这些神经成像模式,有助于在未来比较这些患者群体的研究中提高分析的统一性。收集到的数据将有助于开发基于机器学习的分类工具,并提高我们对失调症特异性神经生物学因素的认识。伦理和传播已获得相关地方伦理委员会的伦理批准。NEMO研究旨在开拓运动障碍机器学习的应用。我们预计将在多个相关研究领域发表文章,并通过患者协会和新闻稿向患者通报重要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Next move in movement disorders: neuroimaging protocols for hyperkinetic movement disorders
IntroductionThe Next Move in Movement Disorders (NEMO) study is an initiative aimed at advancing our understanding and the classification of hyperkinetic movement disorders, including tremor, myoclonus, dystonia, and myoclonus-dystonia. The study has two main objectives: (a) to develop a computer-aided tool for precise and consistent classification of these movement disorder phenotypes, and (b) to deepen our understanding of brain pathophysiology through advanced neuroimaging techniques. This protocol review details the neuroimaging data acquisition and preprocessing procedures employed by the NEMO team to achieve these goals.Methods and analysisTo meet the study’s objectives, NEMO utilizes multiple imaging techniques, including T1-weighted structural MRI, resting-state fMRI, motor task fMRI, and 18F-FDG PET scans. We will outline our efforts over the past 4 years to enhance the quality of our collected data, and address challenges such as head movements during image acquisition, choosing acquisition parameters and constructing data preprocessing pipelines. This study is the first to employ these neuroimaging modalities in a standardized approach contributing to more uniformity in the analyses of future studies comparing these patient groups. The data collected will contribute to the development of a machine learning-based classification tool and improve our understanding of disorder-specific neurobiological factors.Ethics and disseminationEthical approval has been obtained from the relevant local ethics committee. The NEMO study is designed to pioneer the application of machine learning of movement disorders. We expect to publish articles in multiple related fields of research and patients will be informed of important results via patient associations and press releases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Human Neuroscience
Frontiers in Human Neuroscience 医学-神经科学
CiteScore
4.70
自引率
6.90%
发文量
830
审稿时长
2-4 weeks
期刊介绍: Frontiers in Human Neuroscience is a first-tier electronic journal devoted to understanding the brain mechanisms supporting cognitive and social behavior in humans, and how these mechanisms might be altered in disease states. The last 25 years have seen an explosive growth in both the methods and the theoretical constructs available to study the human brain. Advances in electrophysiological, neuroimaging, neuropsychological, psychophysical, neuropharmacological and computational approaches have provided key insights into the mechanisms of a broad range of human behaviors in both health and disease. Work in human neuroscience ranges from the cognitive domain, including areas such as memory, attention, language and perception to the social domain, with this last subject addressing topics, such as interpersonal interactions, social discourse and emotional regulation. How these processes unfold during development, mature in adulthood and often decline in aging, and how they are altered in a host of developmental, neurological and psychiatric disorders, has become increasingly amenable to human neuroscience research approaches. Work in human neuroscience has influenced many areas of inquiry ranging from social and cognitive psychology to economics, law and public policy. Accordingly, our journal will provide a forum for human research spanning all areas of human cognitive, social, developmental and translational neuroscience using any research approach.
期刊最新文献
Theta burst stimulation on the fronto-cerebellar connective network promotes cognitive processing speed in the simple cognitive task Neuromuscular impairments of cerebral palsy: contributions to gait abnormalities and implications for treatment Cognitive potency and safety of tDCS treatment for major depressive disorder: a systematic review and meta-analysis. Electrically evoked late latency response using single electrode stimulation and its relation to speech perception among paediatric cochlear implant users Enhancement of laryngeal contrasts in non-native English clear speech: a comparison between L2-immersed sequential bilinguals and L1-immersed speakers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1