{"title":"化学合成和绿色合成纳米氧化锌对鱼肉糜的保质期和感官质量的影响","authors":"Achinta Mahato, Paresh Nath Chatterjee, Sougata Sarkar, Arup Ratan Sen, Aruna Pal, Sovan Roy, Amlan Kumar Patra","doi":"10.3390/foods13172810","DOIUrl":null,"url":null,"abstract":"The purpose of this study was to investigate the effect of chemically and green synthesized zinc oxide nanoparticles (ZnO-NPs) on the shelf life and sensory quality of fish meat. In this study, ZnO-NPs were synthesized by employing the colloidal chemistry (CZnO-NPs) and green synthesis (GZnO-NPs) methods, and they were also characterized to assess their morphology. The synthesized ZnO-NPs, ZnO, and zinc acetate (ZnA) were used for the preservation and fortification of fish (Pangasius hypophthalmus) meat at 20 mg/kg of Zn. In a six-day storage study at 4 °C, the fish samples were evaluated for their sensory attributes (color and odor), physicochemical quality (pH and total volatile base nitrogen), oxidative changes (thiobarbituric acid-reactive substances and peroxide value), and microbial loads at 0, 3, and 6 days of storage. The fortification of raw fish with the synthesized CZnO-NPs produced better sensory attributes (color and odor) and maintained a pH non-conducive to microbial growth throughout the entire storage period compared with the control, ZnO, and ZnA-fortified samples. The GZnO-NPs largely did not provide any added advantage over CZnO-NPs but sometimes responded better than the control, ZnO, and ZnA samples. Oxidative status and total volatile base nitrogen were lower for CZnO-NPs in refrigerated fish compared with the other treatments. The ZnO-NP-fortified fish had the lowest counts of total viable bacteria, coliforms, Staphylococcus spp., and Vibrio spp. Hence, the fortification of fish with synthesized CZnO-NPs is promising as a food additive to reduce microbial spoilage and lipid peroxidation of fish in storage.","PeriodicalId":12386,"journal":{"name":"Foods","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Chemically and Green Synthesized Zinc Oxide Nanoparticles on Shelf Life and Sensory Quality of Minced Fish (Pangasius hypophthalmus)\",\"authors\":\"Achinta Mahato, Paresh Nath Chatterjee, Sougata Sarkar, Arup Ratan Sen, Aruna Pal, Sovan Roy, Amlan Kumar Patra\",\"doi\":\"10.3390/foods13172810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study was to investigate the effect of chemically and green synthesized zinc oxide nanoparticles (ZnO-NPs) on the shelf life and sensory quality of fish meat. In this study, ZnO-NPs were synthesized by employing the colloidal chemistry (CZnO-NPs) and green synthesis (GZnO-NPs) methods, and they were also characterized to assess their morphology. The synthesized ZnO-NPs, ZnO, and zinc acetate (ZnA) were used for the preservation and fortification of fish (Pangasius hypophthalmus) meat at 20 mg/kg of Zn. In a six-day storage study at 4 °C, the fish samples were evaluated for their sensory attributes (color and odor), physicochemical quality (pH and total volatile base nitrogen), oxidative changes (thiobarbituric acid-reactive substances and peroxide value), and microbial loads at 0, 3, and 6 days of storage. The fortification of raw fish with the synthesized CZnO-NPs produced better sensory attributes (color and odor) and maintained a pH non-conducive to microbial growth throughout the entire storage period compared with the control, ZnO, and ZnA-fortified samples. The GZnO-NPs largely did not provide any added advantage over CZnO-NPs but sometimes responded better than the control, ZnO, and ZnA samples. Oxidative status and total volatile base nitrogen were lower for CZnO-NPs in refrigerated fish compared with the other treatments. The ZnO-NP-fortified fish had the lowest counts of total viable bacteria, coliforms, Staphylococcus spp., and Vibrio spp. Hence, the fortification of fish with synthesized CZnO-NPs is promising as a food additive to reduce microbial spoilage and lipid peroxidation of fish in storage.\",\"PeriodicalId\":12386,\"journal\":{\"name\":\"Foods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/foods13172810\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods13172810","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Effects of Chemically and Green Synthesized Zinc Oxide Nanoparticles on Shelf Life and Sensory Quality of Minced Fish (Pangasius hypophthalmus)
The purpose of this study was to investigate the effect of chemically and green synthesized zinc oxide nanoparticles (ZnO-NPs) on the shelf life and sensory quality of fish meat. In this study, ZnO-NPs were synthesized by employing the colloidal chemistry (CZnO-NPs) and green synthesis (GZnO-NPs) methods, and they were also characterized to assess their morphology. The synthesized ZnO-NPs, ZnO, and zinc acetate (ZnA) were used for the preservation and fortification of fish (Pangasius hypophthalmus) meat at 20 mg/kg of Zn. In a six-day storage study at 4 °C, the fish samples were evaluated for their sensory attributes (color and odor), physicochemical quality (pH and total volatile base nitrogen), oxidative changes (thiobarbituric acid-reactive substances and peroxide value), and microbial loads at 0, 3, and 6 days of storage. The fortification of raw fish with the synthesized CZnO-NPs produced better sensory attributes (color and odor) and maintained a pH non-conducive to microbial growth throughout the entire storage period compared with the control, ZnO, and ZnA-fortified samples. The GZnO-NPs largely did not provide any added advantage over CZnO-NPs but sometimes responded better than the control, ZnO, and ZnA samples. Oxidative status and total volatile base nitrogen were lower for CZnO-NPs in refrigerated fish compared with the other treatments. The ZnO-NP-fortified fish had the lowest counts of total viable bacteria, coliforms, Staphylococcus spp., and Vibrio spp. Hence, the fortification of fish with synthesized CZnO-NPs is promising as a food additive to reduce microbial spoilage and lipid peroxidation of fish in storage.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds