化学合成和绿色合成纳米氧化锌对鱼肉糜的保质期和感官质量的影响

IF 4.7 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Foods Pub Date : 2024-09-04 DOI:10.3390/foods13172810
Achinta Mahato, Paresh Nath Chatterjee, Sougata Sarkar, Arup Ratan Sen, Aruna Pal, Sovan Roy, Amlan Kumar Patra
{"title":"化学合成和绿色合成纳米氧化锌对鱼肉糜的保质期和感官质量的影响","authors":"Achinta Mahato, Paresh Nath Chatterjee, Sougata Sarkar, Arup Ratan Sen, Aruna Pal, Sovan Roy, Amlan Kumar Patra","doi":"10.3390/foods13172810","DOIUrl":null,"url":null,"abstract":"The purpose of this study was to investigate the effect of chemically and green synthesized zinc oxide nanoparticles (ZnO-NPs) on the shelf life and sensory quality of fish meat. In this study, ZnO-NPs were synthesized by employing the colloidal chemistry (CZnO-NPs) and green synthesis (GZnO-NPs) methods, and they were also characterized to assess their morphology. The synthesized ZnO-NPs, ZnO, and zinc acetate (ZnA) were used for the preservation and fortification of fish (Pangasius hypophthalmus) meat at 20 mg/kg of Zn. In a six-day storage study at 4 °C, the fish samples were evaluated for their sensory attributes (color and odor), physicochemical quality (pH and total volatile base nitrogen), oxidative changes (thiobarbituric acid-reactive substances and peroxide value), and microbial loads at 0, 3, and 6 days of storage. The fortification of raw fish with the synthesized CZnO-NPs produced better sensory attributes (color and odor) and maintained a pH non-conducive to microbial growth throughout the entire storage period compared with the control, ZnO, and ZnA-fortified samples. The GZnO-NPs largely did not provide any added advantage over CZnO-NPs but sometimes responded better than the control, ZnO, and ZnA samples. Oxidative status and total volatile base nitrogen were lower for CZnO-NPs in refrigerated fish compared with the other treatments. The ZnO-NP-fortified fish had the lowest counts of total viable bacteria, coliforms, Staphylococcus spp., and Vibrio spp. Hence, the fortification of fish with synthesized CZnO-NPs is promising as a food additive to reduce microbial spoilage and lipid peroxidation of fish in storage.","PeriodicalId":12386,"journal":{"name":"Foods","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Chemically and Green Synthesized Zinc Oxide Nanoparticles on Shelf Life and Sensory Quality of Minced Fish (Pangasius hypophthalmus)\",\"authors\":\"Achinta Mahato, Paresh Nath Chatterjee, Sougata Sarkar, Arup Ratan Sen, Aruna Pal, Sovan Roy, Amlan Kumar Patra\",\"doi\":\"10.3390/foods13172810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study was to investigate the effect of chemically and green synthesized zinc oxide nanoparticles (ZnO-NPs) on the shelf life and sensory quality of fish meat. In this study, ZnO-NPs were synthesized by employing the colloidal chemistry (CZnO-NPs) and green synthesis (GZnO-NPs) methods, and they were also characterized to assess their morphology. The synthesized ZnO-NPs, ZnO, and zinc acetate (ZnA) were used for the preservation and fortification of fish (Pangasius hypophthalmus) meat at 20 mg/kg of Zn. In a six-day storage study at 4 °C, the fish samples were evaluated for their sensory attributes (color and odor), physicochemical quality (pH and total volatile base nitrogen), oxidative changes (thiobarbituric acid-reactive substances and peroxide value), and microbial loads at 0, 3, and 6 days of storage. The fortification of raw fish with the synthesized CZnO-NPs produced better sensory attributes (color and odor) and maintained a pH non-conducive to microbial growth throughout the entire storage period compared with the control, ZnO, and ZnA-fortified samples. The GZnO-NPs largely did not provide any added advantage over CZnO-NPs but sometimes responded better than the control, ZnO, and ZnA samples. Oxidative status and total volatile base nitrogen were lower for CZnO-NPs in refrigerated fish compared with the other treatments. The ZnO-NP-fortified fish had the lowest counts of total viable bacteria, coliforms, Staphylococcus spp., and Vibrio spp. Hence, the fortification of fish with synthesized CZnO-NPs is promising as a food additive to reduce microbial spoilage and lipid peroxidation of fish in storage.\",\"PeriodicalId\":12386,\"journal\":{\"name\":\"Foods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/foods13172810\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods13172810","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探讨化学合成和绿色合成的氧化锌纳米粒子(ZnO-NPs)对鱼肉保质期和感官质量的影响。本研究采用胶体化学法(CZnO-NPs)和绿色合成法(GZnO-NPs)合成了 ZnO-NPs,并对其形态进行了表征。合成的 ZnO-NPs、ZnO 和醋酸锌(ZnA)被用于鱼肉(鳙鱼)的保鲜和强化,锌含量为 20 mg/kg。在 4 °C 下储存六天的研究中,对鱼肉样品的感官属性(颜色和气味)、理化质量(pH 值和总挥发性碱氮)、氧化变化(硫代巴比妥酸反应物质和过氧化值)以及储存 0、3 和 6 天的微生物量进行了评估。与对照组、ZnO 和 ZnA 强化样品相比,用合成的 CZnO-NPs 强化生鱼可产生更好的感官属性(颜色和气味),并在整个储存期间保持不利于微生物生长的 pH 值。与 CZnO-NPs 相比,GZnO-NPs 基本上没有提供任何额外的优势,但有时比对照组、ZnO 和 ZnA 样品反应更好。与其他处理相比,冷藏鱼中 CZnO-NPs 的氧化状态和总挥发性碱基氮较低。因此,用合成的 CZnO-NPs 强化鱼肉作为食品添加剂,有望减少鱼肉在储存过程中的微生物腐败和脂质过氧化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Chemically and Green Synthesized Zinc Oxide Nanoparticles on Shelf Life and Sensory Quality of Minced Fish (Pangasius hypophthalmus)
The purpose of this study was to investigate the effect of chemically and green synthesized zinc oxide nanoparticles (ZnO-NPs) on the shelf life and sensory quality of fish meat. In this study, ZnO-NPs were synthesized by employing the colloidal chemistry (CZnO-NPs) and green synthesis (GZnO-NPs) methods, and they were also characterized to assess their morphology. The synthesized ZnO-NPs, ZnO, and zinc acetate (ZnA) were used for the preservation and fortification of fish (Pangasius hypophthalmus) meat at 20 mg/kg of Zn. In a six-day storage study at 4 °C, the fish samples were evaluated for their sensory attributes (color and odor), physicochemical quality (pH and total volatile base nitrogen), oxidative changes (thiobarbituric acid-reactive substances and peroxide value), and microbial loads at 0, 3, and 6 days of storage. The fortification of raw fish with the synthesized CZnO-NPs produced better sensory attributes (color and odor) and maintained a pH non-conducive to microbial growth throughout the entire storage period compared with the control, ZnO, and ZnA-fortified samples. The GZnO-NPs largely did not provide any added advantage over CZnO-NPs but sometimes responded better than the control, ZnO, and ZnA samples. Oxidative status and total volatile base nitrogen were lower for CZnO-NPs in refrigerated fish compared with the other treatments. The ZnO-NP-fortified fish had the lowest counts of total viable bacteria, coliforms, Staphylococcus spp., and Vibrio spp. Hence, the fortification of fish with synthesized CZnO-NPs is promising as a food additive to reduce microbial spoilage and lipid peroxidation of fish in storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foods
Foods Immunology and Microbiology-Microbiology
CiteScore
7.40
自引率
15.40%
发文量
3516
审稿时长
15.83 days
期刊介绍: Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: Ÿ manuscripts regarding research proposals and research ideas will be particularly welcomed Ÿ electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material Ÿ we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds
期刊最新文献
A Candy Defect Detection Method Based on StyleGAN2 and Improved YOLOv7 for Imbalanced Data. Accelerated Life Testing of Biodegradable Starch Films with Nanoclay Using the Elongation Level as a Stressor. Detection of Mycotoxin Contamination in Foods Using Artificial Intelligence: A Review. Detection of Veterinary Drugs in Food Using a Portable Mass Spectrometer Coupled with Solid-Phase Microextraction Arrow. Effect of Shikimic Acid on Oxidation of Myofibrillar Protein of Duck Meat During Heat Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1