用于检测极端环境的精确高效超限集算法

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Computational Statistics Pub Date : 2024-09-06 DOI:10.1007/s00180-024-01540-y
Thomas Suesse, Alexander Brenning
{"title":"用于检测极端环境的精确高效超限集算法","authors":"Thomas Suesse, Alexander Brenning","doi":"10.1007/s00180-024-01540-y","DOIUrl":null,"url":null,"abstract":"<p>Inference for predicted exceedance sets is important for various environmental issues such as detecting environmental anomalies and emergencies with high confidence. A critical part is to construct inner and outer predicted exceedance sets using an algorithm that samples from the predictive distribution. The simple currently used sampling procedure can lead to misleading conclusions for some locations due to relatively large standard errors when proportions are estimated from independent observations. Instead we propose an algorithm that calculates probabilities numerically using the Genz–Bretz algorithm, which is based on quasi-random numbers leading to more accurate inner and outer sets, as illustrated on rainfall data in the state of Paraná, Brazil.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"60 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A precise and efficient exceedance-set algorithm for detecting environmental extremes\",\"authors\":\"Thomas Suesse, Alexander Brenning\",\"doi\":\"10.1007/s00180-024-01540-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inference for predicted exceedance sets is important for various environmental issues such as detecting environmental anomalies and emergencies with high confidence. A critical part is to construct inner and outer predicted exceedance sets using an algorithm that samples from the predictive distribution. The simple currently used sampling procedure can lead to misleading conclusions for some locations due to relatively large standard errors when proportions are estimated from independent observations. Instead we propose an algorithm that calculates probabilities numerically using the Genz–Bretz algorithm, which is based on quasi-random numbers leading to more accurate inner and outer sets, as illustrated on rainfall data in the state of Paraná, Brazil.</p>\",\"PeriodicalId\":55223,\"journal\":{\"name\":\"Computational Statistics\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01540-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01540-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

预测超标集的推断对各种环境问题都很重要,如以高置信度检测环境异常和紧急情况。其中一个关键部分是使用从预测分布中采样的算法构建内部和外部预测超标集。目前使用的简单取样程序可能会对某些地点产生误导性结论,因为从独立观测值估算比例时,标准误差相对较大。相反,我们提出了一种使用 Genz-Bretz 算法数值计算概率的算法,该算法以准随机数为基础,可得出更准确的内部和外部集合,如巴西巴拉那州的降雨数据所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A precise and efficient exceedance-set algorithm for detecting environmental extremes

Inference for predicted exceedance sets is important for various environmental issues such as detecting environmental anomalies and emergencies with high confidence. A critical part is to construct inner and outer predicted exceedance sets using an algorithm that samples from the predictive distribution. The simple currently used sampling procedure can lead to misleading conclusions for some locations due to relatively large standard errors when proportions are estimated from independent observations. Instead we propose an algorithm that calculates probabilities numerically using the Genz–Bretz algorithm, which is based on quasi-random numbers leading to more accurate inner and outer sets, as illustrated on rainfall data in the state of Paraná, Brazil.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
期刊最新文献
Bayes estimation of ratio of scale-like parameters for inverse Gaussian distributions and applications to classification Multivariate approaches to investigate the home and away behavior of football teams playing football matches Kendall correlations and radar charts to include goals for and goals against in soccer rankings Bayesian adaptive lasso quantile regression with non-ignorable missing responses Statistical visualisation of tidy and geospatial data in R via kernel smoothing methods in the eks package
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1