表面声波激发涡旋陀螺模式的实验观测

R. Lopes Seeger, F. Millo, G. Soares, J. -V. Kim, A. Solignac, G. de Loubens, T. Devolder
{"title":"表面声波激发涡旋陀螺模式的实验观测","authors":"R. Lopes Seeger, F. Millo, G. Soares, J. -V. Kim, A. Solignac, G. de Loubens, T. Devolder","doi":"arxiv-2409.05998","DOIUrl":null,"url":null,"abstract":"The traditional method for exciting spin-wave dynamics in magnetic materials\ninvolves microwave magnetic fields generated by current injection into\ninductive antennas. However, there is a growing interest in non-inductive\nexcitation methods. Magneto-acoustic effects present a viable alternative,\nwhere strains produced by applying voltages to a piezoelectric substrate can\ncouple to spin-waves in a magnetic film. Recently, it has been proposed that\nsurface acoustic waves (SAWs) can excite the gyrotropic mode of the vortex\nstate in a magnetic disk. Here we report on experiments utilizing a magnetic\nresonance force microscope to investigate magnetization dynamics in CoFeB\nsub-micrometer disks in the vortex state, grown on a Z-cut LiNbO$_3$ substrate.\nThe device design enables excitation of the gyrotropic mode either inductively,\nusing an antenna on top of the disks, or acoustically via SAWs launched from an\ninterdigital transducer. Our modelling indicates that the lattice rotation\n{\\omega}xz generates a localized magneto-acoustic field that displaces the\nvortex core from the disk center, initiating the gyration motion. Tuning of the\nmagneto-acoustic torque acting on the vortex structure is achieved by a\nperpendicular magnetic field. These results demonstrate the clear excitation of\nthe vortex gyrotropic mode by magneto-acoustic excitation.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental observation of vortex gyrotropic mode excited by surface acoustic waves\",\"authors\":\"R. Lopes Seeger, F. Millo, G. Soares, J. -V. Kim, A. Solignac, G. de Loubens, T. Devolder\",\"doi\":\"arxiv-2409.05998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional method for exciting spin-wave dynamics in magnetic materials\\ninvolves microwave magnetic fields generated by current injection into\\ninductive antennas. However, there is a growing interest in non-inductive\\nexcitation methods. Magneto-acoustic effects present a viable alternative,\\nwhere strains produced by applying voltages to a piezoelectric substrate can\\ncouple to spin-waves in a magnetic film. Recently, it has been proposed that\\nsurface acoustic waves (SAWs) can excite the gyrotropic mode of the vortex\\nstate in a magnetic disk. Here we report on experiments utilizing a magnetic\\nresonance force microscope to investigate magnetization dynamics in CoFeB\\nsub-micrometer disks in the vortex state, grown on a Z-cut LiNbO$_3$ substrate.\\nThe device design enables excitation of the gyrotropic mode either inductively,\\nusing an antenna on top of the disks, or acoustically via SAWs launched from an\\ninterdigital transducer. Our modelling indicates that the lattice rotation\\n{\\\\omega}xz generates a localized magneto-acoustic field that displaces the\\nvortex core from the disk center, initiating the gyration motion. Tuning of the\\nmagneto-acoustic torque acting on the vortex structure is achieved by a\\nperpendicular magnetic field. These results demonstrate the clear excitation of\\nthe vortex gyrotropic mode by magneto-acoustic excitation.\",\"PeriodicalId\":501234,\"journal\":{\"name\":\"arXiv - PHYS - Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

激发磁性材料自旋波动力学的传统方法涉及通过向电感式天线注入电流而产生的微波磁场。然而,人们对非电感激发方法的兴趣与日俱增。磁声效应是一种可行的替代方法,通过对压电基板施加电压产生的应变与磁性薄膜中的自旋波相互抵消。最近,有人提出表面声波(SAW)可以激发磁盘中涡旋态的陀螺模式。在此,我们报告了利用磁共振力显微镜研究涡旋态 CoFeB 亚微米磁盘磁化动态的实验。该装置的设计可以通过磁盘顶部的天线以感应方式激发陀螺回转模式,或通过从数字传感器发射的声表面波以声学方式激发陀螺回转模式。我们的建模表明,晶格旋转{\omega}xz会产生局部磁声场,使涡旋核心偏离磁盘中心,从而引发回旋运动。通过垂直磁场实现了对作用于涡旋结构的磁声力矩的调谐。这些结果表明,磁声激励明显激发了涡旋的回旋模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental observation of vortex gyrotropic mode excited by surface acoustic waves
The traditional method for exciting spin-wave dynamics in magnetic materials involves microwave magnetic fields generated by current injection into inductive antennas. However, there is a growing interest in non-inductive excitation methods. Magneto-acoustic effects present a viable alternative, where strains produced by applying voltages to a piezoelectric substrate can couple to spin-waves in a magnetic film. Recently, it has been proposed that surface acoustic waves (SAWs) can excite the gyrotropic mode of the vortex state in a magnetic disk. Here we report on experiments utilizing a magnetic resonance force microscope to investigate magnetization dynamics in CoFeB sub-micrometer disks in the vortex state, grown on a Z-cut LiNbO$_3$ substrate. The device design enables excitation of the gyrotropic mode either inductively, using an antenna on top of the disks, or acoustically via SAWs launched from an interdigital transducer. Our modelling indicates that the lattice rotation {\omega}xz generates a localized magneto-acoustic field that displaces the vortex core from the disk center, initiating the gyration motion. Tuning of the magneto-acoustic torque acting on the vortex structure is achieved by a perpendicular magnetic field. These results demonstrate the clear excitation of the vortex gyrotropic mode by magneto-acoustic excitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anionic disorder and its impact on the surface electronic structure of oxynitride photoactive semiconductors Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials through Active Learning Hybridization gap approaching the two-dimensional limit of topological insulator Bi$_x$Sb$_{1-x}$ Sampling Latent Material-Property Information From LLM-Derived Embedding Representations Smart Data-Driven GRU Predictor for SnO$_2$ Thin films Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1