稀土氧化物密度函数理论的交换相关性近似值的性能

Mary Kathleen Caucci, Jacob T. Sivak, Saeed S. I. Almishal, Christina M. Rost, Ismaila Dabo, Jon-Paul Maria, Susan B. Sinnott
{"title":"稀土氧化物密度函数理论的交换相关性近似值的性能","authors":"Mary Kathleen Caucci, Jacob T. Sivak, Saeed S. I. Almishal, Christina M. Rost, Ismaila Dabo, Jon-Paul Maria, Susan B. Sinnott","doi":"arxiv-2409.06145","DOIUrl":null,"url":null,"abstract":"Rare-earth oxides (REOs) are an important class of materials owing to their\nunique properties, including high ionic conductivities, large dielectric\nconstants, and elevated melting temperatures, making them relevant to several\ntechnological applications such as catalysis, ionic conduction, and sensing.\nThe ability to predict these properties at moderate computational cost is\nessential to guiding materials discovery and optimizing materials performance.\nAlthough density-functional theory (DFT) is the favored approach for predicting\nelectronic and atomic structures, its accuracy is limited in describing strong\nelectron correlation and localization inherent to REOs. The newly developed\nstrongly constrained and appropriately normed (SCAN) meta-generalized-gradient\napproximations (meta-GGAs) promise improved accuracy in modeling these strongly\ncorrelated systems. We assess the performance of these meta-GGAs on binary REOs\nby comparing the numerical accuracy of thirteen exchange-correlation\napproximations in predicting structural, magnetic, and electronic properties.\nHubbard U corrections for self-interaction errors and spin-orbit coupling are\nsystematically considered. Our comprehensive assessment offers insights into\nthe physical properties and functional performance of REOs predicted by\nfirst-principles and provides valuable guidance for selecting optimal DFT\nfunctionals for exploring these materials.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of Exchange-Correlation Approximations to Density-Functional Theory for Rare-earth Oxides\",\"authors\":\"Mary Kathleen Caucci, Jacob T. Sivak, Saeed S. I. Almishal, Christina M. Rost, Ismaila Dabo, Jon-Paul Maria, Susan B. Sinnott\",\"doi\":\"arxiv-2409.06145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rare-earth oxides (REOs) are an important class of materials owing to their\\nunique properties, including high ionic conductivities, large dielectric\\nconstants, and elevated melting temperatures, making them relevant to several\\ntechnological applications such as catalysis, ionic conduction, and sensing.\\nThe ability to predict these properties at moderate computational cost is\\nessential to guiding materials discovery and optimizing materials performance.\\nAlthough density-functional theory (DFT) is the favored approach for predicting\\nelectronic and atomic structures, its accuracy is limited in describing strong\\nelectron correlation and localization inherent to REOs. The newly developed\\nstrongly constrained and appropriately normed (SCAN) meta-generalized-gradient\\napproximations (meta-GGAs) promise improved accuracy in modeling these strongly\\ncorrelated systems. We assess the performance of these meta-GGAs on binary REOs\\nby comparing the numerical accuracy of thirteen exchange-correlation\\napproximations in predicting structural, magnetic, and electronic properties.\\nHubbard U corrections for self-interaction errors and spin-orbit coupling are\\nsystematically considered. Our comprehensive assessment offers insights into\\nthe physical properties and functional performance of REOs predicted by\\nfirst-principles and provides valuable guidance for selecting optimal DFT\\nfunctionals for exploring these materials.\",\"PeriodicalId\":501234,\"journal\":{\"name\":\"arXiv - PHYS - Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

稀土氧化物(REOs)是一类重要的材料,因为它们具有独特的性质,包括高离子电导率、大介电常数和较高的熔化温度,这使它们与催化、离子传导和传感等多种技术应用相关。虽然密度泛函理论(DFT)是预测电子和原子结构的首选方法,但它在描述 REOs 固有的强电子相关性和局域化方面的准确性有限。新开发的强约束和适当规范(SCAN)元广义梯度逼近(meta-GGAs)有望提高这些强相关系统的建模精度。我们通过比较 13 种交换相关近似方法在预测结构、磁性和电子特性方面的数值精确度,评估了这些元广义梯度近似方法在二元 REO 上的性能。我们的全面评估深入揭示了第一性原理预测的 REO 物理性质和功能性能,为选择最佳 DFT 函数探索这些材料提供了宝贵的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance of Exchange-Correlation Approximations to Density-Functional Theory for Rare-earth Oxides
Rare-earth oxides (REOs) are an important class of materials owing to their unique properties, including high ionic conductivities, large dielectric constants, and elevated melting temperatures, making them relevant to several technological applications such as catalysis, ionic conduction, and sensing. The ability to predict these properties at moderate computational cost is essential to guiding materials discovery and optimizing materials performance. Although density-functional theory (DFT) is the favored approach for predicting electronic and atomic structures, its accuracy is limited in describing strong electron correlation and localization inherent to REOs. The newly developed strongly constrained and appropriately normed (SCAN) meta-generalized-gradient approximations (meta-GGAs) promise improved accuracy in modeling these strongly correlated systems. We assess the performance of these meta-GGAs on binary REOs by comparing the numerical accuracy of thirteen exchange-correlation approximations in predicting structural, magnetic, and electronic properties. Hubbard U corrections for self-interaction errors and spin-orbit coupling are systematically considered. Our comprehensive assessment offers insights into the physical properties and functional performance of REOs predicted by first-principles and provides valuable guidance for selecting optimal DFT functionals for exploring these materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anionic disorder and its impact on the surface electronic structure of oxynitride photoactive semiconductors Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials through Active Learning Hybridization gap approaching the two-dimensional limit of topological insulator Bi$_x$Sb$_{1-x}$ Sampling Latent Material-Property Information From LLM-Derived Embedding Representations Smart Data-Driven GRU Predictor for SnO$_2$ Thin films Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1