{"title":"萌发延迟对玉米(Zea mays L.)氮吸收的影响","authors":"Susana Albarenque, Bruno Basso, Ricardo Melchiori","doi":"10.1002/agj2.21678","DOIUrl":null,"url":null,"abstract":"<p>Spatial and temporal variability in plant emergence may cause differences in nitrogen (N) uptake by crops leading to a mismatch between plant nitrogen requirements and nitrogen supply, with negative environmental and economic impacts. We aimed to understand N uptake and concentration (%) in unevenly emerged plants by conducting experiments in pre-determined yield stability zones (YSZs) in three farmers’ fields planted to maize (<i>Zea mays</i> L.). We found that maize emergence ranged from 64 to 124.1°C day, with significant variability between YSZ in two of three fields. Maize biomass plant-to-plant variation decreased from maize six leaves stage (V6) to maize silking stage (R1). At maize physiological maturity (R6), biomass ranged from 54 to 736 g plant<sup>−1</sup> and was significantly affected by YSZ (<i>p</i> < 0.001). In the cases where late-emerging plants accumulated less N than early emerging plants, this led to altered N partitioning within the plant (i.e., nitrogen harvest index decrease). Although N concentration in the grains remained unaffected by late emergence, the N concentration in the biomass increased. This was likely due to a reduced total biomass and the lack of a N sink (i.e., less yield per plant due to less grain per plant). The absence of variations in N utilization across emergence classes, coupled with the significant impact observed in the YSZ, reinforces the advantages of focusing on N management fitted to YSZ. Understanding the impact that the spatial and temporal variation of plant emergence has on maize N uptake is important in helping to improve N input prescription maps, N-use efficiency, and reduce N losses to the environment.</p>","PeriodicalId":7522,"journal":{"name":"Agronomy Journal","volume":"116 6","pages":"2872-2884"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agj2.21678","citationCount":"0","resultStr":"{\"title\":\"Emergence delay effect on maize (Zea mays L.) nitrogen uptake\",\"authors\":\"Susana Albarenque, Bruno Basso, Ricardo Melchiori\",\"doi\":\"10.1002/agj2.21678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spatial and temporal variability in plant emergence may cause differences in nitrogen (N) uptake by crops leading to a mismatch between plant nitrogen requirements and nitrogen supply, with negative environmental and economic impacts. We aimed to understand N uptake and concentration (%) in unevenly emerged plants by conducting experiments in pre-determined yield stability zones (YSZs) in three farmers’ fields planted to maize (<i>Zea mays</i> L.). We found that maize emergence ranged from 64 to 124.1°C day, with significant variability between YSZ in two of three fields. Maize biomass plant-to-plant variation decreased from maize six leaves stage (V6) to maize silking stage (R1). At maize physiological maturity (R6), biomass ranged from 54 to 736 g plant<sup>−1</sup> and was significantly affected by YSZ (<i>p</i> < 0.001). In the cases where late-emerging plants accumulated less N than early emerging plants, this led to altered N partitioning within the plant (i.e., nitrogen harvest index decrease). Although N concentration in the grains remained unaffected by late emergence, the N concentration in the biomass increased. This was likely due to a reduced total biomass and the lack of a N sink (i.e., less yield per plant due to less grain per plant). The absence of variations in N utilization across emergence classes, coupled with the significant impact observed in the YSZ, reinforces the advantages of focusing on N management fitted to YSZ. Understanding the impact that the spatial and temporal variation of plant emergence has on maize N uptake is important in helping to improve N input prescription maps, N-use efficiency, and reduce N losses to the environment.</p>\",\"PeriodicalId\":7522,\"journal\":{\"name\":\"Agronomy Journal\",\"volume\":\"116 6\",\"pages\":\"2872-2884\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agj2.21678\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/agj2.21678\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agj2.21678","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Emergence delay effect on maize (Zea mays L.) nitrogen uptake
Spatial and temporal variability in plant emergence may cause differences in nitrogen (N) uptake by crops leading to a mismatch between plant nitrogen requirements and nitrogen supply, with negative environmental and economic impacts. We aimed to understand N uptake and concentration (%) in unevenly emerged plants by conducting experiments in pre-determined yield stability zones (YSZs) in three farmers’ fields planted to maize (Zea mays L.). We found that maize emergence ranged from 64 to 124.1°C day, with significant variability between YSZ in two of three fields. Maize biomass plant-to-plant variation decreased from maize six leaves stage (V6) to maize silking stage (R1). At maize physiological maturity (R6), biomass ranged from 54 to 736 g plant−1 and was significantly affected by YSZ (p < 0.001). In the cases where late-emerging plants accumulated less N than early emerging plants, this led to altered N partitioning within the plant (i.e., nitrogen harvest index decrease). Although N concentration in the grains remained unaffected by late emergence, the N concentration in the biomass increased. This was likely due to a reduced total biomass and the lack of a N sink (i.e., less yield per plant due to less grain per plant). The absence of variations in N utilization across emergence classes, coupled with the significant impact observed in the YSZ, reinforces the advantages of focusing on N management fitted to YSZ. Understanding the impact that the spatial and temporal variation of plant emergence has on maize N uptake is important in helping to improve N input prescription maps, N-use efficiency, and reduce N losses to the environment.
期刊介绍:
After critical review and approval by the editorial board, AJ publishes articles reporting research findings in soil–plant relationships; crop science; soil science; biometry; crop, soil, pasture, and range management; crop, forage, and pasture production and utilization; turfgrass; agroclimatology; agronomic models; integrated pest management; integrated agricultural systems; and various aspects of entomology, weed science, animal science, plant pathology, and agricultural economics as applied to production agriculture.
Notes are published about apparatus, observations, and experimental techniques. Observations usually are limited to studies and reports of unrepeatable phenomena or other unique circumstances. Review and interpretation papers are also published, subject to standard review. Contributions to the Forum section deal with current agronomic issues and questions in brief, thought-provoking form. Such papers are reviewed by the editor in consultation with the editorial board.