实施 MCMC:有把握的多变量估计

James M. Flegal, Rebecca P. Kurtz-Garcia
{"title":"实施 MCMC:有把握的多变量估计","authors":"James M. Flegal, Rebecca P. Kurtz-Garcia","doi":"arxiv-2408.15396","DOIUrl":null,"url":null,"abstract":"This paper addresses the key challenge of estimating the asymptotic\ncovariance associated with the Markov chain central limit theorem, which is\nessential for visualizing and terminating Markov Chain Monte Carlo (MCMC)\nsimulations. We focus on summarizing batching, spectral, and initial sequence\ncovariance estimation techniques. We emphasize practical recommendations for\nmodern MCMC simulations, where positive correlation is common and leads to\nnegatively biased covariance estimates. Our discussion is centered on\ncomputationally efficient methods that remain viable even when the number of\niterations is large, offering insights into improving the reliability and\naccuracy of MCMC output in such scenarios.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"126 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementing MCMC: Multivariate estimation with confidence\",\"authors\":\"James M. Flegal, Rebecca P. Kurtz-Garcia\",\"doi\":\"arxiv-2408.15396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the key challenge of estimating the asymptotic\\ncovariance associated with the Markov chain central limit theorem, which is\\nessential for visualizing and terminating Markov Chain Monte Carlo (MCMC)\\nsimulations. We focus on summarizing batching, spectral, and initial sequence\\ncovariance estimation techniques. We emphasize practical recommendations for\\nmodern MCMC simulations, where positive correlation is common and leads to\\nnegatively biased covariance estimates. Our discussion is centered on\\ncomputationally efficient methods that remain viable even when the number of\\niterations is large, offering insights into improving the reliability and\\naccuracy of MCMC output in such scenarios.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":\"126 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了估计与马尔可夫链中心极限定理相关的渐近方差这一关键挑战,这对于可视化和终止马尔可夫链蒙特卡罗(MCMC)模拟至关重要。我们重点总结了批处理、频谱和初始序列方差估计技术。我们强调对现代 MCMC 模拟的实用建议,因为正相关是常见现象,会导致协方差估计出现相对偏差。我们的讨论集中在计算效率高的方法上,这些方法即使在迭代次数多的情况下仍然可行,为在这种情况下提高 MCMC 输出的可靠性和准确性提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementing MCMC: Multivariate estimation with confidence
This paper addresses the key challenge of estimating the asymptotic covariance associated with the Markov chain central limit theorem, which is essential for visualizing and terminating Markov Chain Monte Carlo (MCMC) simulations. We focus on summarizing batching, spectral, and initial sequence covariance estimation techniques. We emphasize practical recommendations for modern MCMC simulations, where positive correlation is common and leads to negatively biased covariance estimates. Our discussion is centered on computationally efficient methods that remain viable even when the number of iterations is large, offering insights into improving the reliability and accuracy of MCMC output in such scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1